Week 4 Problem Set

Problem 1

Problem 1a Increase.

 $\begin{array}{l} \underline{Problem \ 1b} \ \Delta x = \frac{\pi}{k_{x,max}} \ \Delta y = \frac{\pi}{k_{y,max}} \\ \underline{Problem \ 1c} \ FOV_x = \frac{2\pi}{\Delta k_x} \ FOV_y = \frac{2\pi}{\Delta k_y} \\ \hline \mathbf{Problem \ 2} \\ \underline{Problem \ 2a} \ W_x = 1/\tau \\ \underline{Problem \ 2b} \ W_y = 1/\Delta \\ \underline{Problem \ 2c} \ \Delta x = \tau \delta B_0 F_x \ , \ \underline{Problem \ 2d} \ \Delta y = \Delta \delta B_0 F_y \end{array}$

<u>Problem 2e</u> Assuming the same fields of view in each $\Delta y > \Delta x$ because $\Delta \gg \tau$.

Problem 3

<u>Problem 3a</u> If there was one spoke, the critical distance would be $\omega t = \pi$ where t = (1/24)sec so that implies $\omega = 24\pi s^{-1}$. With 8 spokes, there are 4 in the range $(0, \pi)$ so the wheel only needs to turn $\pi/4$ for this condition to be met. Thus $\omega = (24\pi/4) = 6\pi s^{-1}$.

<u>Problem 3b</u> Every odd line in k_y is modulated with the same intensity and every even line in k_y is modulated with the same intensity, but different from the odd lines. So the image can be thought of as the sum two images, each with 1/2 the FOV of the original images since each has $\Delta k'_y = 2\Delta k_y$ and $FOV = 2\pi/(\Delta k'_y)$. The image thus has bright spots at the location of the vessel and at $\pm FOV_y$.