Week 3 Problem Set

Problem 1

Problem 1a

1. $\omega_0 = \gamma B_0 = 42.57 Mhz/T \times 3T = 127.74 Mhz$

2.
$$m_{\parallel}(t=0) = M_0 \hat{z}$$

3. $m_{\perp}(t=0)=0$

 $\underline{Problem \ 1b}$

- 1. $m_{\perp}(t=\tau) = M_0 e^{-\tau/T_2^*}$
- 2. $m_{\perp}(t=\tau_E) = M_0 e^{-\tau_E/T_2}$
- 3. T_2^* is due to local field inhomogeneities and is reversible (by the 180) whereas T_2 is due to random microscopic interactions and is not reversible.

Problem 2

Consider a normal human brain in the a 3T human MRI scanner.

<u>Problem 2a</u> The MRI signal is

$$s(\mathbf{k}) = \int m_{\perp}(\mathbf{x}, t) e^{-i\mathbf{k}\cdot\mathbf{x}} d\mathbf{x}$$
(1)

1. $i = \sqrt{-1}$

2.
$$\mathbf{k} = \gamma G_x t$$

- 3. \mathbf{x} is the spatial coordinate
- 4. The " \cdot " $\mathbf{k} \cdot \mathbf{x}$ is the vector dot product and expresses the fact that the gradient produces a phase along a particular direction.

Problem 2b

1.

$$\vec{G} = \begin{pmatrix} G_x \\ G_y \\ G_z \end{pmatrix} \tag{2}$$

2.

$$\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \tag{3}$$

3. $\mathbf{k} \cdot \mathbf{x} = k_x x + k_y y + k_z z = \gamma G_x x t + \gamma G_y t y + \gamma G_z t z$

Problem 2c

The applied gradients are $G_x = 1G/cm$, $G_y = 1G/cm$ and $G_z = 0G/cm$.

- 1. $\phi = \tan^{-1}(1) = 45^{\circ}$
- 2. $\phi = \tan^{-1}(1/2) \approx 27^{\circ}$
- 3. $\phi = \tan^{-1}(1/2) \approx 27^{\circ}$