Week 3 Problem Set

Problem 1

Consider a block of a single tissue type placed in the a 3T human MRI scanner.

<u>Problem 1a</u> A time t = 0 an initial magnetization $M_0\hat{z}$ points along the direction (\hat{z}) of the main magnetic field $\mathbf{B}_0 = B_0\hat{\mathbf{z}}$.

- 1. What is the Larmor frequencey ω in terms of the main field B_0 ?
- 2. What is the longitudinal magnetization m_{\parallel} at t=0?
- 3. What is the transverse magnetization m_{\perp} at t=0?

<u>Problem 1b</u> An excitation pulse of 90° is applied along the x-axis at time t = 0. Assuming that this pulse happens instantly. Ignore T_1 relaxation.

- 1. What is the transverse magnetization m_{\perp} at a time $t = \tau$ shortly (a few ms) after the pulse?
- 2. A series of refocussing (180°) pulses are applied. Assume an echo occurs at the time τ_E . What is the amplitude of this echo?
- 3. Why is T_2^* refocussed but T_2 isn't?

Problem 2

Consider a normal human brain in the a 3T human MRI scanner.

<u>Problem 2a</u> The MRI signal is

$$s(\mathbf{k}) = \int m_{\perp}(\mathbf{x}, t)e^{-i\mathbf{k}\cdot\mathbf{x}}d\mathbf{x}$$
 (1)

- 1. What is i?
- 2. What is k?
- 3. What is \mathbf{x} ?
- 4. What is the " \cdot " between **k** and **x**?

Problem 2b

We apply gradients G_x , G_y and G_z along each of the three axes x, y, and z, respectively, for a time τ .

- 1. Write the gradients in vector form
- 2. Write the spatial coordinates in vector form
- 3. What is $\mathbf{k} \cdot \mathbf{x}$?

Problem 2c

The applied gradients are $G_x = 1G/cm$, $G_y = 1G/cm$ and $G_z = 0G/cm$.

1. What is the angle of phase generated in the xy plane by these gradients?

CogSci 260: Introduction to Diffusion Tensor Imaging

Instructor: L. Frank (lfrank@ucsd.edu)

- 2. What is the angle of phase generated in the xy plane if we double the strength of G_x ?
- 3. What is the angle of phase generated in the xy plane if we half the strength of G_y ?