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Entropy Spectrum Pathway

GO-ESP



High Resolution MRI of Elasmobranchs

Mustelus henlei (Data courtesy JM Tyszka)

Elasmobranchs have an elaborate 
sensory system

Brown Smoothhound

Neuroscience Motivation



Connectivity

Data: M. Tyszka, CalTech
DTI in Mustelus henlei @ 9.4T
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Ambiguity of the diffusion tensor

crossing fibers



The Crossing Fiber Problem

diffusion PDFs



Reducing Tracking ambiguity  
using higher order tensors



Tracking ambiguity

crossing/kissing fiberssingle fibers



The Logical Fallacy of most 
tractography methods

Algorithm 

1. Estimate diffusion in each voxel independently 
(Assumes voxels are independent of one another) 

2. Create tracts from these estimates           
(Assumes voxels are dependent on one another)

Can’t both be correct!



single fiber modela more realistic modeltwo fiber model



Test Phantom

Spherical “head” with three orthogonal 
fibers (red, green, blue)

x

y
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Data sampling

b=1000 b=2000 b=3000

Figure 2: The data sampling. Three shells with b = {1000, 2000, 3000}. Healpix sampling of p = {7, 8, 9},
number of points n = {588, 768, 972}.

b=1000 b=2000 b=3000

Figure 3: The signal in the center voxel from the numerical phantom (Figure 1) for the three different
sampling shells shown in Figure 2. The data from this voxel in a single experiment would thus be the
combination of the points in all three panels, which we have separate just for ease of viewing.

3. Theory

The approach used by current DTI methods can generally be described as consist-
ing of two steps. The first is to estimate the diffusion profile (as described by a tensor,
of perhaps high order) in every voxel. The second step is to construct tracks by tracing
through these profiles. It is worth noting here that this procedure really contains some-
thing of a logical fallacy in that the first step assumes all voxels are unrelated, since the
estimation of the fundamental quality, the diffusion probability density function (dPDF)
often called the ensemble average propagator (EAP,[9–12]), is done independently for
each voxel, while the second step assumes that the voxels are connected, since an im-
plicit model (e.g., streamlines, typically constraints on bending angles, anisotropy, etc are
imposted) is used to relate neighboring voxels.

Our approach can be described in three steps. The first is a characterization of the dif-
fusion weighted signal measured in each voxel, since that is the raw data acquired in DWI
experiments. This step is essentially the first step in the standard approach (although we
use a novel, fast and robust algorithm to compute it [13]) but the derived quantities are
used in a different way. Our second step is new, and involves constructing a mathemat-
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3 shells with Healpix
n=(588,768,972)



Actual data is combined signal from all 
three shells

Signal at the center voxel
b=1000 b=2000 b=3000
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DWI Signal in single voxel

W (r, q) =

Z
Q(r,R)e�iq·RdR

Q(r,R) = ⇢(r)p�(r,R)

R = r(t0 + t)� r(t0) q = �G�/2⇡

R = RR̂ R = kRkwhere q = qq̂ q = kqkwhere

spin density average propagator



Signal in single voxel
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where



Automated Shape characterization of 
Volumetric Data

Galinsky and Frank, NeuroImage 2014



How do we incorporate microscopic 
phenomena and models into 

macroscopic prediction?



The Logical Inconsistency of DTI Tractography

Step 1:  Estimate diffusion profile in each voxel
Implicit assumption 

Voxels are all independent of one another 

Step 2:  Construct tract by connecting neighboring voxels

Implicit assumption 
Voxels are dependent on one another 

These can’t both be true!



Incorporating local (voxel) and 
global (Tracts) information

Entropy Spectrum Pathways (ESP) 
Frank & Galinsky,  Phys Rev E (2014)

4/6/15, 4:14 PMGoogle Maps

Page 1 of 2https://www.google.com/maps/@32.7145475,-117.1592264,2875m/data=!3m1!1e3?hl=en



Entropy Spectrum Pathways (ESP)

i kj Qik = 0Qij = 1

= inaccessible = accessibleEigenvectors �(l)
of Q tell us the most

accessible regions of the parameter space

Qij is an element of the coupling matrix Q that

describes the interaction of points xi and xj



Prior Information:  
Entropy Spectrum Pathways (ESP)

a

b
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ac = x1x2 . . . xm�1

�
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cb = xmxm+1 . . . xn



So How do we better incorporate 
prior information?

INFORMATION PATHWAYS IN A DISORDERED LATTICE PHYSICAL REVIEW E 89, 032142 (2014)

From Eqs. (6) and (9),

λi = − ln(zfi), 1 ! i ! s, (13)

which, when substituted into Eq. (3) and properly normalized,
gives the multinomial distribution [6]

p(γ ) =
n∏

i

1
dxi

=
s∏

j=1

(
1
dj

)Nj

. (14)

For a 2D Cartesian lattice s = 4. The number of different paths
for specified Ni is N !/(N1! · · · Ns!).

Equation (14) says that the probability of any path only
depends on how many times the values {vi} appear along the
path, but not on the order in which they appear. Thus the GRW
can be viewed as the maximum entropy solution when the
prior information is limited to the frequency of occurrences of
the defects.

B. Prior information about the coupling of the
available values {v}

Suppose now that our prior information consists of the
frequency fij with which the pairs of value vivj occur together.
At the end, we will consider the special case in which this
information is reduced to whether or not location i and j are
connected, so that the prior information is just the adjacency
matrix. Now we consider the more general case where

Nij = number of times vivj appears along γ ,

fij = expected frequencies of the pairs vivj ,

and the fij are known (they are again the prior information),
then

⟨Nij ⟩ =
∑

{γ }
Nij (γ ) p(γ ) = (n − 1)fij , {i,j} = 1, . . . ,s,

(15)

where n =
∑

ij Nij is the total number of jumps between sites,
and thus the trajectory length, and again {γ } denotes the set of
all possible paths γ . In the path γ the number of times the pair
xixj appears is

Nij (γ ) =
n−1∑

k=1

δi,kδj,k+1 (16)

where δ represents the Dirac delta function: δi,j = 1 if i = j
and δi,j = 0 for i ̸= j .

This problem is logically identical to the problem of digram
frequencies in communication theory addressed by Jaynes [7].
The path probability p(γ ) that has maximum entropy subject
to the constraint Eq. (15) has the solution

p(γ ) = 1
Z

exp

⎡

⎣−
s∑

i,j=1

λijNij (γ )

⎤

⎦ , (17)

where the partition function is

Z(λij ) =
∑

{γ }
exp

⎡

⎣−
s∑

i,j=1

λijNij (γ )

⎤

⎦ . (18)

This complicated sum over all the different paths γ is
simplified by noting that this partition function can be rewritten
in terms of a matrix product

Z(λij ) =
s∑

i,j=1

[Q(n−1)]ij , (19)

where the matrix Q is defined as

Qij = e−λij . (20)

This matrix defines the interactions between locations on the
lattice and so will be called the coupling matrix. As we show
later, the Lagrange multiplier λij that define the interactions
can be seen as local potentials that depend on some function
of the spatial locations xij on the lattice. We will suppress the
more complete notation λij (xij ), and thus Q(xij ), for clarity.

A useful trick to simplify the computation of the partition
function [7] is to add the step (xn,x1) to the pathway, which
adds another exp(−λij ) to the partition function Eq. (18)
and creates periodic boundary conditions. This modifies
Eq. (19) to

Z(λij ) =
s∑

i,j=1

[Qn]ij = Tr(Qn) =
s∑

k=1

qn
k , (21)

where {qk} are the roots of |Qij − qδij |. This trick is justified
in the limit of long trajectories n → ∞. The probability of the
entire path, Eq. (17) can be written using Eqs. (16) and (20),

p(γab|I ) = Z−1Qx1,x2Qx2,x3 · · · Qxn−1,xn
, (22)

where the periodic boundary conditions trick has been invoked.
While Eq. (17) is formally the solution of the path prob-

ability, we would like to determine the transition probability.
In order to do this, we can consider the problem of how our
estimates change as we move along a path. In other words, if
we have moved part way along a path, what does this tell us
about the remainder of the path? This is analogous to the partial
message problem [7]. To address this question, imagine that
we break the path γab from an initial point a to a final point
b into two segments (Fig. 3) defined by some intermediate
point c = xm−1 (i.e., a ! c ! b), so that the first segment is of

m

(a) (b)

FIG. 3. (Color online) Paths on a defective lattice. (a) How many
ways are there to get from a to b in 4 steps? Blue paths (visiting only
white squares) are allowed, red (visiting at least one black square) are
not. (b) The transition probability can be found by splitting the path
into two segments, γ (m−a)

ac and γ
(n−m+1)
cb at the point m (Eq. 23).
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Frank & Galinsky,  
Information pathways in a disordered lattice. 
Phys Rev E, 89, 032142 (2014)

Entropy Spectrum Pathways (ESP)



Local coupling informs global structure!

binary lattice with adjacency matrix A

= inaccessible = accessible

Equilibrium Probability (EP)
~(principal eigenvector of A)2

In ESP theory, A is any coupling matrix, and there are 
a spectrum of pathways ranked by their path entropy.



Local diffusion generates global paths 
through nearest neighbor coupling

Dynamics - microscopic to macroscopic

INFORMATION PATHWAYS IN A DISORDERED LATTICE PHYSICAL REVIEW E 89, 032142 (2014)

(a) t1 (b) t2 (c) t3

FIG. 9. (Color online) The time-varying distribution P (x,y,t) for the path entropy Fig. 8 at three successive time points. The starting
distribution follows the maximum entropy path shown in Eq. (6). The initially localized distribution moves and spreads in accordance with the
local entropy field structure, then stalls and tightens at the maximum entropy location [the dark red region in Fig. 8(a)], and the location of the
highest probability concentration of p∞

t [Fig. 6(d)].

resolution is never (currently) fine enough to resolve individual
fibers, and thus individual voxel measurements are degraded by
averaging over fiber bundles, possibly at different orientations,
and other tissue compartments. Given the great complexity of
the neural structure of the human brain, reconstruction of the
macroscopic neural pathways from large volumes of noisy,
highly multidimensional tensors derived from measurements
of microscopic signal variations poses a significant theoretical
and computational challenge.

The reconstruction of the macroscopic neural fiber path-
ways from the microscopic measurements of the local dif-
fusion from DTI data is precisely the type of problem
suited for the ESP formalism. The goal is to determine
the most probable global pathways (neural fibers) consistent
with measured values (diffusion tensors) based upon the
available prior information. The ESP formalism provides a
general method for the incorporation of prior information

regarding the relationship between voxels. For the current
paper, we limit the demonstration to the nearest neighborhood
coupling discussed in detail above, though we stress that this
is but one possible realization of the method. For the nearest
neighbor coupling, the local potential can be derived from the
interaction of the tensors, which is chosen here to be their inner
product.

A complete details of implementation, including computa-
tion of diffusion tensors, generation of fractional anisotropy
(FA) map, assignment of the potential matrix [Eq. (20)] with
an appropriate choice of coefficients and thresholds will be
deferred to a more specialized publication. We include here
only a short comparison of the final trajectory generated
between two chosen points by ESP [Fig. 10(c)] and GRW
[Fig. 10(b)] (using the same number of time steps nt =
500). A composite map of FA overlayed with the principal
eigenvectors is shown for a single slice in Fig. 10(a).

(a) DT-MRI data (b) Fiber tracking with GRW (c) Fiber tracking with ESP

FIG. 10. (Color online) The application of ESP to neural fiber tractography using diffusion tensor magnetic resonance imaging (DT-MRI)
and comparison with the generic uniform random walk (GRW). Data were collected on a normal human subject on a 3T GE Excite MR system
with an eight-channel phase-array head coil using a spin echo echo-planar acquisition optimized for minimum echo time and the reduction of
eddy current artifacts [16]. Diffusion weighted images were collected along 61 gradient directions distributed according to the electrostatic
repulsion model [17] at a b value of b = 1500 s/mm2. The acquisition parameters were TE/TR = 93/10,900 ms, FOV = 240 mm, NEX = 1,
matrix = 128 × 128 with 34 contiguous 3 mm slices. Two field maps were collected for unwarping to correct for signal loss and geometric
distortion due to B0 field inhomogeneities [18,19]. Total scan time including field maps was approximately 16 minutes.
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GO-ESP  
Geometric Optics diffusion estimation 

and tractography using ESP
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 “Fiber Cup”



1. Human Connectome Project MGH 1010 Single Subject 
• 140x140x96 with 1.5x1.5x1.5 voxel 
• 4 shells, b-values of b=(1000,2000,3000,4000,5000) 
• 64x64x128x256 q-vectors 

2. BCAIPI Single Subject UCSD CFMRI protocol 
• 100x100x62  with 2.2x2.2x2.2 voxel 
• 3 shells, b-values of b=(1000,2000,3000) 
• 30x45x60 q-vectors

Test datasets

“Multi-shell” - just a simple and efficient method for  
sampling some of q-space

diffusion sensitivity space

Each  scan is done twice, (TOPUP, TOPDOWN)



Why	Mul(band?

TR	for	single	slice	excita(on

Time:



Why	Mul(band?

Time:

Time:

TR	for	mul(band	excita(on

Use	saved	(me	to:	Increase	resolu(on,	collect	more	data…	

TR	for	single	slice	excita(on



UCSD CFMRI  
Distortion Correction (TOPUP)

FSL TOPUP and eddy current corrected

Original data (forward PE grad direction)

Andersson, Skare, Ashburner, NeuroImage 20 (2003) 870



Transition probabilities NOT pdf’s

GO-ESP



a b

c d

Five fiber tracts: different fiber orientations at different scales.

GO-ESP



Seven tracts corticospinal tract crossing corpus callosum.

GO-ESPa b

c d



a b

c d

e f

GO-ESP



ESP vs Standard PDF methods  

Produces incorrect reconstruction 
at multiple fibers crossing

RSI

Correctly reconstructs fibers 
at multiple fibers crossing

ESP



GO-ESP vs RSI

RSIDWI-ESP

FA

(rescaled RSI color scale)(same color scale)



Anisotropy

FA Equilibrium 
Probability



Whole brain GO-ESP



GO-ESP results from UCSD CFMRI protocol

whole brain tractography



Whole brain GO-ESP

a b

c d

a b

c d

Maximum Aniso



a slice of tractography

GO-ESP results from UCSD CFMRI protocol



What is the Geometric Structure of 
 Brain Fiber Pathways?

Wedeen, et.al. Science 2012

(fig. S13), and was strongest when the GoC pop-
ulation was sparsely activated by chemical excit-
atory synaptic inputs (fig. S14).

Our results show that the passive properties
of GoC dendrites confer distance-dependent sub-
linear chemical synaptic integration. This weakens
the impact of distal excitatory inputs. However,
the high density of dendritic GJs in the molecular
layer enables PF synaptic charge to flow into the
dendrites of neighboringGoCs. This GJ-mediated
lateral excitation counteracts the effects of sub-
linear dendritic behavior by enabling distal inputs
to drive network activity more effectively. Den-
dritic GJs therefore counteract the problem of
dendritic saturation (24) without the need to
boost electrically remote synaptic input with
active dendritic conductances (25). A key role of
interneurons is to counteract and balance network
excitation. The combination of passive dendrites
and dendritic GJs facilitates this by enabling a
larger fraction of interneurons to respond to lo-
calized patches of synaptic excitation. Our results
reveal how GJs on inhibitory interneuron den-
drites could contribute to spatial averaging, which
has been proposed in the retina (26) and excitatory
olfactory neurons in insects (27), and to the broad
tuning of inhibitory interneurons in cortex (28).
These mechanisms are also likely to contribute to
gain control in the granule cell layer through PF-
mediated feedback (29), and it seems likely that

interneurons in cortical and subcortical structures
(7) use similar mechanisms. Our results suggest
that interneurons do not operate as fully indepen-
dent neuronal units but share charge during chem-
ical synaptic excitation and thus exhibit features
of a syncitium.
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The Geometric Structure of the
Brain Fiber Pathways
Van J. Wedeen,1* Douglas L. Rosene,2 Ruopeng Wang,1 Guangping Dai,1 Farzad Mortazavi,2

Patric Hagmann,3 Jon H. Kaas,4 Wen-Yih I. Tseng5

The structure of the brain as a product of morphogenesis is difficult to reconcile with the
observed complexity of cerebral connectivity. We therefore analyzed relationships of adjacency and
crossing between cerebral fiber pathways in four nonhuman primate species and in humans by
using diffusion magnetic resonance imaging. The cerebral fiber pathways formed a rectilinear
three-dimensional grid continuous with the three principal axes of development. Cortico-cortical
pathways formed parallel sheets of interwoven paths in the longitudinal and medio-lateral axes,
in which major pathways were local condensations. Cross-species homology was strong and showed
emergence of complex gyral connectivity by continuous elaboration of this grid structure. This
architecture naturally supports functional spatio-temporal coherence, developmental path-finding,
and incremental rewiring with correlated adaptation of structure and function in cerebral
plasticity and evolution.

The organizing principles of cerebral con-
nectivity remain unclear. In the brainstem
and spinal cord, fiber pathways are or-

ganized as parallel families derived from the three
principal axes of embryonic development: the
rostro-caudal, themedio-lateral (or proximo-distal),
and the dorso-ventral (1–6). In the forebrain of
advanced species, however, corresponding pat-
terns of connectivity have yet to be established.
Many studies of evolution, development, and gene
expression point to a geometric organization of
cerebral fiber pathways similar to that of the brain-

stem (3–5, 7–9), and functional studies (10–13)
also suggest that connectivity is geometrically or-
ganized. Several leading theories of cerebral func-
tion (14–17) propose geometric organization at
multiple scales. However, high-resolution studies
of cerebral connectivity with tract tracers have
given only limited evidence of geometric orga-
nization (10–12, 18, 19).

A challenge in the investigation of cerebral
structure and connectivity can be traced to the
common occurrence of distinct pathways within
the same small volumes of tissue, or “path cross-

ing.” Crossing is a pervasive feature of brain
structure and may be essential for efficient con-
nectivity (20, 21). Owing to crossing, the map-
ping of connectivity must untangle pathways
from cellular to macroscopic scales simultane-
ously (22, 23). This was accomplished with tract
tracers methods, which are considered a gold stan-
dard (18, 19). Tracer studies inject compounds
into the live brain and allow them to disperse by
means of axonal transport, marking individual
axons over large distances. However, these can
map only a small fraction of the pathways in any
single brain and are not feasible in humans. Thus,
the discovery and analysis of the structural re-
lationships between pathways—and their context
within cerebral connectivity—has remained chal-
lenging (18, 19, 24).

To address these limitations, methods have
been developed to map the fiber pathways of the

1Department of Radiology, Massachusetts General Hospital
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Institute of Technology Athinoula A. Martinos Center for
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Street, W701, Boston, MA 02118, USA. 3Department of
Radiology, University Hospital Center–University of Lausanne,
Rue du Bugnon, 46, CH-1011 Lausanne, Switzerland. 4Depart-
ment of Psychology, College of Arts and Sciences, Vanderbilt
University, 301Wilson Hall, 111 21st Avenue South, Nashville,
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electronic Biomedicine, National Taiwan University College of
Medicine, 1 Jen-Ai Rd, Taipei, Sec 1, 100 Taiwan.
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The character of a typical cerebral path neigh-
borhood is illustrated in Fig. 1. In Fig. 1A, an
association pathway—rhesus monkey superior
longitudinal fasciculus-3 (SLF3)—is identified by
its termination within the parietal lobe; this is the
MRI analog of a tracer injection (25). So defined,
this pathway appeared as an almost isolated struc-
ture. In Fig. 1B, the path neighborhood of SLF3
was identified and was astonishingly simple. It

entirely consists of a single curved two-dimensional
(2D) sheet of paths, all mutually parallel, trans-
versely oriented, and all crossing SLF3 at nearly
right angles.

To investigate neighborhood structure indepen-
dent of path identifications, we adopted the follow-
ing procedure: select a small region, identify its
incident paths, and compute the paths incident on
these paths, their neighborhood. This was per-

formed in the rhesus frontal lobe, as illustrated in
Fig. 1, C to E. The path neighborhood comprises
two sets—transverse callosal paths and longitudinal
paths of the cingulum and SLF1—that crossed like
the warp and weft of a fabric as a near-orthogonal
grid. Thus, these paths formed a single biaxial sys-
tem. This patternwas typical of cerebral whitematter.

The 3D structure of cerebral pathways was
demonstrated through analysis of several path

A

C

D

B

µm µm

Fig. 2. Grid structure of cerebral pathways. The grid structure of the pathways
of the sagittal stratum in the rhesus occipital lobe was demonstrated by means
of neighborhood analysis. (A and B) Four seed regions were selected (spheres
are indicated as superficial by red and green and as deep by yellow and
orange), their paths identified (white), and neighborhoods computed (fronto-
occipital fasciculus, blue; callosal paths, red and orange). The interior view
along the axis of the structure (C) illustrates its character as an orthogonal
grid. These neighborhoods comprised 2D sheets of closed quadrilaterals at

each depth [(B), arrows]. The paths within each sheet were orthogonal: of the
longitudinal fronto-occipital fasciculus (FOF) (blue) or the transverse callsum
(red) and association system (green). Paths of the third mutually orthogonal
direction (arrowhead), perpendicular to the local cortical surface, were noted.
(D) Confocal microscopy of a sagittal slice oblique cut parallel to the lateral
face of the sagittal stratum showed in-plane crossing of FOF (horizontal) and
callosal paths (vertical oblique), and the 2D autocorrelation map of this
microscopy, representative of the fiber orientations.
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What is the Geometric Structure of 
 Brain Fiber Pathways?

Wedeen, et.al. Science 2012

2D surfaces. Geometrically, this configuration is
highly exceptional (26, 27). Just as it is exceed-
ingly unlikely that several points fall on a straight
line, it is similarly improbable that two families
of curves in 3D have any 2D surfaces in com-
mon. This sheet structure was found throughout
cerebral white matter and in all species, orienta-
tions, and curvatures.Moreover, no brain pathways
were observed without sheet structure. Further, be-
cause the processes of diffusion encoding, recon-

struction, and tractography are purely local, limited
to single or to adjacent voxels, whereas the spa-
tial correlations entailed in this pattern were long-
range and nonlinear, this structure could not be
attributed to technical artifacts related to the im-
aging of diffusion (SOM text and fig. S2). A
histological counterpart of the crossing structure
of fiber pathways was observed with confocal
microscopy: a tissue section through the rhesus
monkey sagittal stratum cut parallel to the sheets

of Fig. 2, A to C, that showed axons interweaving
and crossing in two axes, which was confirmed
by the orientation distribution of their spatial
autocorrelation (28).

Grid structure of cerebral pathways was per-
vasive, coherent, and continuous with the three
principal axes of development. In each region
in Fig. 3A, continuous grid structure is demon-
strated across several regions in the frontal lobes
in rhesus monkey, including left arcuate sulcus,

Fig. 4. Homologous cerebral grid structure in (A) galago, (B) marmoset, (C)
owl monkey, (D) rhesus monkey, and (E) human, left lateral views. Homologous
grid structures including those of the corpus callosum/cingulum bundle (CC/CB);
sagittal stratum and supra-Sylvian region were identified in all species, and that

of the anterior commissure and fornix (AC/FX) was resolved in all ex vivo studies
[(A) to (D)]. In the rhesus monkey, grid structure is shown in gyri and sulci, in-
cluding the principal, arcuate, and central sulci and the superior temporal
gyrus, continuous as grids with those of the adjacent deep white matter.
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What is the Geometric Structure of 
 Brain Fiber Pathways?

Wedeen, et.al. Science 2012

“The cerebral fiber pathways formed a rectilinear three-dimensional grid 
continuous with the three principal axes of development”.  

“Cortico-cortical pathways formed parallel sheets of interwoven paths in 
the  longitudinal  and  medio-lateral  axes,  in  which  major  pathways  were 
local condensations.” 

“. . . the near orthogonal structure of pathways is not limited to a particular 
plane but exists throughout a 3D volume . . . ”



The Catani Objection 

Comment on ''The Geometric Structure of the Brain Fiber Pathways'' 
Marco Catani et al. Science 337, 1605 (2012)

Comment on “The Geometric Structure
of the Brain Fiber Pathways”
Marco Catani,1,2* Istvan Bodi,3 Flavio Dell’Acqua1,4

Wedeen et al. (Reports, 30 March 2012, p. 1628) proposed a geometrical grid pattern in the
brain that could help the understanding of the brain’s organization and connectivity. We show
that whole-brain fiber crossing quantification does not support their theory. Our results suggest
that the grid pattern is most likely an artifact attributable to the limitations of their method.

In the history of neuroscience, the develop-
ment of new methods to investigate brain
anatomy has been pivotal to our understand-

ing of the complexity of cognition and behavior

(1). Nevertheless, newly developed methods need
to be validated and their limitations precisely
identified under rigorous experimental conditions
before trying to infer general principles of brain

organization derived from their application. Golgi,
for example, reported that the brain was orga-
nized like a “continuous net” (i.e., reticular the-
ory) because his staining method did not reveal
the presence of synapses (2).

Over the past 10 years, advances in diffusion
magnetic resonance imaging have opened a new
window into the architecture of human brain

TECHNICALCOMMENT
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Fig. 1. (A) Visualization of the possible ODF profiles according to different
methods and different crossing angles. Some dODF methods are limited in
resolving crossing below 75°, whereas fODF methods resolve crossing at 45°
or lower. (B) Distribution of the percentage of voxels containing fibers crossing
at different angles in a sample of 10 healthy human brains. The plateau be-
tween 55° and 90° suggests that orthogonal crossing is not the most prevalent
configuration in the human brain. The histogram is likely to underestimate the
presence of crossing angles <45°, and therefore the 12% prevalence of 90°

crossing probably represents an overestimation. (C) Tractography reconstruction
of the crossing between the corpus callosum (red) and the corticospinal tract
(yellow) connections that, according to (3), contains only orthogonal fibers. In
this reconstruction, based on SD, the crossing is at angles of 60° or lower. (D)
Postmortem blunt dissections of the thalamic projections (red arrows), inferior-
fronto-occipital fasciculus (blue arrows), and uncinate (green arrow) show that
the three tracts fan out or merge to run in parallel rather than crossing or-
thogonally [modified from (15)].
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The Catani Objection 

Comment on ''The Geometric Structure of the Brain Fiber Pathways'' 
Marco Catani et al. Science 337, 1605 (2012)

“Other methods are able to obtain sharper ODF profiles by extracting 
directly the underlying fiber orientation (i.e., fiber-ODF or fODF) using 
a specific diffusion model for white matter fibers. “

“Furthermore, the experimental results reported by Wedeen et al. (3) 
are mainly qualitative. In our view, the lack of a quantitative and 
comprehen- sive analysis of the entire brain across individuals limits 
their ability to extend their conclusions to the whole brain”
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Comment on ''The Geometric Structure of the Brain Fiber Pathways'' 
Marco Catani et al. Science 337, 1605 (2012)

Comment on “The Geometric Structure
of the Brain Fiber Pathways”
Marco Catani,1,2* Istvan Bodi,3 Flavio Dell’Acqua1,4

Wedeen et al. (Reports, 30 March 2012, p. 1628) proposed a geometrical grid pattern in the
brain that could help the understanding of the brain’s organization and connectivity. We show
that whole-brain fiber crossing quantification does not support their theory. Our results suggest
that the grid pattern is most likely an artifact attributable to the limitations of their method.

In the history of neuroscience, the develop-
ment of new methods to investigate brain
anatomy has been pivotal to our understand-

ing of the complexity of cognition and behavior

(1). Nevertheless, newly developed methods need
to be validated and their limitations precisely
identified under rigorous experimental conditions
before trying to infer general principles of brain

organization derived from their application. Golgi,
for example, reported that the brain was orga-
nized like a “continuous net” (i.e., reticular the-
ory) because his staining method did not reveal
the presence of synapses (2).

Over the past 10 years, advances in diffusion
magnetic resonance imaging have opened a new
window into the architecture of human brain
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Fig. 1. (A) Visualization of the possible ODF profiles according to different
methods and different crossing angles. Some dODF methods are limited in
resolving crossing below 75°, whereas fODF methods resolve crossing at 45°
or lower. (B) Distribution of the percentage of voxels containing fibers crossing
at different angles in a sample of 10 healthy human brains. The plateau be-
tween 55° and 90° suggests that orthogonal crossing is not the most prevalent
configuration in the human brain. The histogram is likely to underestimate the
presence of crossing angles <45°, and therefore the 12% prevalence of 90°

crossing probably represents an overestimation. (C) Tractography reconstruction
of the crossing between the corpus callosum (red) and the corticospinal tract
(yellow) connections that, according to (3), contains only orthogonal fibers. In
this reconstruction, based on SD, the crossing is at angles of 60° or lower. (D)
Postmortem blunt dissections of the thalamic projections (red arrows), inferior-
fronto-occipital fasciculus (blue arrows), and uncinate (green arrow) show that
the three tracts fan out or merge to run in parallel rather than crossing or-
thogonally [modified from (15)].
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The Catani Objection 

Comment on ''The Geometric Structure of the Brain Fiber Pathways'' 
Marco Catani et al. Science 337, 1605 (2012)

“To us, the architecture of the brain, seen through the lens of alternative 
diffusion methods, bears a closer resemblance to the intricate streets of 
Victorian London. . “



The Wedeen Response to the  
Catani Objection 

Response to Comment on
“The Geometric Structure of the
Brain Fiber Pathways”
Van J. Wedeen,1,2* Douglas L. Rosene,3 Ruopeng Wang,1 Guangping Dai,1 Farzad Mortazavi,3

Patric Hagmann,4 Jon H. Kaas,5 Wen-Yih I. Tseng6

In response to Catani et al., we show that corticospinal pathways adhere via sharp turns to
two local grid orientations; that our studies have three times the diffusion resolution of those
compared; and that the noted technical concerns, including crossing angles, do not challenge
the evidence of mathematically specific geometric structure. Thus, the geometric thesis gives the
best account of the available evidence.

InaTechnical Comment, Catani et al. (1) ques-
tion our findings of geometric structure of
the pathways of the brain (2), suggesting that

theymay be technical artifacts. First, Catani et al.’s
imaging and analysis of the example of the cor-
ticospinal tract is not completely accurate. Classic
degeneration studies show that corticospinal path-
ways make exceedingly sharp turns between local
expressions of two cardinal axes, confirming the
grid thesis rather than refuting it (3). This feature is
not reflected in the image presented byCatani et al.,
but is reflected in our images, presumably owing
to improved technical characteristics ex vivo. Sec-
ond, the account of resolution in diffusion magnet-
ic resonance imaging (MRI) given by Catani et al.
is incomplete. We show that the resolution for
tissue microstructure in our ex vivo experiments
is approximately threefold higher than the in vivo
studies compared. Third, Catani et al. do not
address the central observation of the study—
the sheet structure of crossing pathways—or the
evidence that this structure is both pervasive and
a priori exceedingly improbable, hence equally
unlikely to be an artifact. Thus, the thesis of geo-
metric structure best accounts for the available
evidence.

Catani et al. present the corticospinal tract
as a counterexample to our model of geometric
structure, showing diffusion MRI that depicts

corticospinal and callosal paths as crossing in a
continuum of angles from 60° down to 0° angles,
identical orientations, at the vertex. Even if we
allowed that the 60° crossing was consistent with
developmental deformation of cardinal orienta-
tions at this location per our thesis, a continuous
series of crossings down to 0° would be incon-
sistent with continuous deformation (2). Specif-
ically, if the callosal paths express the transverse
direction of a coordinate system and the projec-
tion paths as they appear in Catani et al. express
the rostrocaudal, then they would need to remain
distinct.

More detailed analysis of the corticospinal
tract resolves this difficulty consistent with the
geometric hypothesis. In a classic degeneration
study, Krieg (3) showed that corticospinal fibers
have extremely sharp turns; after an initial seg-
ment from the cortex parallel to callosal paths,
they turn caudally, forming a rostrocaudal orien-
tation field at each point nearly perpendicular
to that of the callosal fibers (Fig. 1, A and B).
Thus, corticospinal trajectories adhere to the local
expressions of the transverse and rostrocaudal
cardinal axes down to an exceedingly small scale,
one below the resolution limits of these MRI
studies. This observation lends our geometric
thesis new and independent support and scope.
We add that Krieg also finds equivalent structure
in humans (3).

Thus, diffusion spectrum imaging (DSI) in the
rhesus shows terminations of corticospinal paths
where they turn sharply (Fig. 1C). This should
be expected with current MRI tractography
predicated on orientation continuity (i.e., path
curvature < ~1 rad/voxel) (4, 5). Conversely, the
smooth appearance of corticospinal paths shown
by Catani et al. is consistent with an artifact
produced by low spatial and/or diffusion reso-
lution, both of which will tend to smooth out
sharp turns. This case indicates that grid struc-
ture has implications for the MRI tractography
of connectivity (2). Closely related, these sharp
turns seriously challenge hypotheses that brain
pathways adhere to minimal or geodesic paths

in any metric (4) or are determined by mechan-
ical tension in any simple way (6).

In the present case, the role of resolution in
diffusion MRI is to enable the differentiation of
populations of fibers within a voxel based on
their orientation (4, 5, 7–9). The principal deter-
minants of resolution of microstructure in dif-
fusion MRI are the physical parameters of the
encoding, whereas sampling pattern is secondary.
Thus, for example, diffusion tensor MRI, how-
ever sampled, has little or no ability to resolve
crossing (7–10).

We have proposed a model of resolution in
diffusion MRI that includes the combined ef-
fects of the spatial frequency and mixing time,
q and ∆, of the diffusion encoding (11). To map
unknown microstructure, the resolution Reff of
diffusion MRI may be considered the sum of
the encoding resolution r = 2pq−1 and a spatial
blur due to diffusion itself, whose radius is the
Einstein length (2D∆)1/2 for diffusivity D. As
these are uncorrelated,

Reff = (r2 + 2D∆)1/2

Assuming brain diffusivity D ≥ 0.2 Dwater, then
the in vivo studies of Catani et al. would have
Reff ≈ 20 mm and our ex vivo studies with Reff ≈
6.5 mm, or more than threefold improved reso-
lution. As shown in the supporting materials,
improved diffusion resolution yields improved
detection of crossing fibers (12).

Regarding the choice of DSI over Q-ball im-
aging or high angular resolution diffusion im-
aging, these latter methods effectively sample
only a subset of the DSI; setting aside noise ef-
fects, they are equivalent to DSI with a band-pass
filter (8–10). Hence, we believe that DSI should
present the lower risk of bias (5) and consider this
more conservative choice appropriate when mi-
crostructure is uncertain or at issue.

We have claimed that the pathways of the
brain adhere to a three-dimensional (3D) co-
ordinate system derived by smooth deforma-
tion from the three cardinal axes of development.
The clearest evidence for this structure in the
mature brain is the sheet structure. Although
the body axes in the early embryo were orthog-
onal, they do not in general remain so in the
mature brain owing to plastic deformations of
development and growth that lead to curvatures
in the lobes, sulci, and gyri in the mature brain
structure. This follows from the theorem that the
only conformal, or angle-preserving, mappings
in three dimensions are rigid motions or isotropic
scaling. Such deviations from orthogonality were
qualitatively observed in all species [figure 4 in
(2)] and measured in rhesus, where they were
found to increase from cerebral center to mantle
to surface [figure S2D in (2)], consistent with
known characteristics of developmental defor-
mation (13, 14). We fully agree that non–right-
angle crossings exist, but this is consistent with
and indeed required by our thesis that brain
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Response to Comment on 
''The Geometric Structure of the Brain Fiber Pathways’' 

Van J. Wedeen et al. Science 337, 1605 (2012); 



The Wedeen Response to the  
Catani Objection 

pathways adhere to local expressions of curved
cardinal coordinates.

Central to our thesis is the finding of sheet
structure in cerebral fibers. We have shown that the
pathways of the brain are equivalent to coordinate
functions because they form in crossing parallel

2D sheets that fill 3D space like pages of a book.
As we emphasize, this is mathematizcally specific
and highly atypical, entailing long-range correla-
tions between paths that are as nonrandom as a lock
and key (having prior probability ≈ 0). This prop-
erty does not depend on fiber orthogonally or the

absence thereof—the concern of Catani et al.—
but rather on a 3D relationship among crossing
planes at different locations (the Frobenius inte-
grability condition). As we have shown, this can
be represented as an angle between subsheets of
fibers, which must be as close to zero as noise
allows [figure S2C in (2)], or by the topology of
the embedding of the reconstructed paths in 3D,
which must be interwoven rather than mutually
helical [figure S2A in (2)]. Whereas this sheet
structure may be obscured by low resolution or
other technical limitations, no mechanisms are
known whereby these limitations will create it as
an artifact. Because we have observed this struc-
ture to be pervasive in cerebral white matter,
homologous across species, consistent with em-
bryogenesis, and consistent across diffusion con-
trast mechanisms, with and without Fourier-Radon
reconstruction, we conclude that this organiza-
tion is real and characteristic of the brain path-
ways (2). The thesis that brain pathways adhere
to a simple geometric system best accounts for
the available evidence—not like London, but
Manhattan; not unfathomable, but unlimited.
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Fig. 1. Corticospinal and callosal pathways of the rhesus monkey, modified fromW. J. S. Krieg, drawing (A)
[(3), figure 37] and degeneration study (B) [(3), figure 96], with permission. In (A), corticospinal paths (red)
leave the prefrontal cortex parallel to transverse callosal paths (green), then turn sharply by approximately
90° (“drop”) to the caudal direction. Even medial corticospinal paths from the vertex show this turn as small
as sharp kinks. The degeneration study shown in (B) shows an example of primary data upon which (A) was
based. Here, the path turns are so sharp that they show no visible curvature at the submillimeter resolution
of this optical tracing. In DSI of rhesus monkey ex vivo (C), rostrocaudal segments of corticospinal paths
(vertical) are nearly perpendicular locally to curved callosal paths (horizontal). These rostrocaudal segments
terminate among transverse paths (arrow), consistent with turns too sharp to resolve in this study. An
illustrative model of the geometric thesis [the mapping f(z) = 1/(z +

ffiffiffiffiffiffi
−1

p
) + 1/(z −

ffiffiffiffiffiffi
−1

p
) of the complex

variable z] (D). The callosal paths (gray) adhere to a transverse coordinate (blue-gray), whereas corticospinal
paths (black) adhere to both transverse and rostrocaludal (red) orientations via sharp 90° turns.
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TECHNICAL COMMENT

Corticospinal  and  callosal  pathways  of  the  rhesus 
monkey  (A),  corticospinal  paths  (red)  leave  the 
prefrontal  cortex  parallel  to  transverse  callosal  paths 
(green),  then  turn  sharply  by  approximately  90° 
(“drop”) to the caudal direction.

In  DSI  of  rhesus  monkey  ex  vivo  (C),  rostrocaudal 
segments  of  corticospinal  paths  (vertical)  are  nearly 
perpendicular  locally  to  curved  callosal  paths 
(horizontal). 

An   illustrative  model  of  the  geometric  thesis  [the 
mapping f(z) = 1/(z + −1) + 1/(z − −1) of the complex 
variable z] (D). The callosal paths (gray) adhere to a 
transverse  coordinate  (blue-gray),  whereas 
corticospinal  paths  (black)  adhere  to  both  transverse 
and rostrocaludal (red) orientations via sharp 90° turns. 



The Wedeen Response to the  
Catani Objection 

Central to our thesis is the finding of sheet structure in cerebral 
fibers.  We  have  shown  that  the  pathways  of  the  brain  are 
equivalent to coordinate functions because they form in crossing 
parallel 2D sheets that fill 3D space like pages of a book. 

As we have shown, this can be represented as an angle between 
subsheets  of  fibers,  which  must  be  as  close  to  zero  as  noise 
allows, or by the topology of the embedding of the reconstructed 
paths  in  3D,  which  must  be  interwoven  rather  than  mutually 
helical. 

As  we  emphasize,  this  is  mathematically  specific  and  highly 
atypical, entailing long-range correlations between paths that are 
as nonrandom as a lock and key (having prior probability ≈ 0). 

This  property  does  not  depend  on  fiber  orthogonally  or  the 
absence thereof—the concern of Catani et al.— but rather on a 3D 
relationship  among  crossing  planes  at  different  locations  (the 
Frobenius integrability condition). 



The Wedeen Response to the  
Catani Objection 

“The  thesis  that  brain  pathways  adhere  to  a 
simple geometric system best accounts for the 
available  evidence—not  like  London,  but 
Manhattan; not unfathomable, but unlimited. “
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Abstract— The recent hypothesis on the occurrence of sheet structure in 
the brain has posed many questions to the diffusion MRI (dMRI) 
community as to whether this structure actually exists and can be 
measured with dMRI. In this work, we exploit the capability of the 
discrete Lie bracket to infer information on the existence of sheet 
structure in real dMRI data. 

I. INTRODUCTION 
The question whether our brain’s structure is best reflected by a three-
dimensional Manhattan street grid or by the intricate streets of Victorian London 
added three Science publications to the dMRI literature [1-3]. Wedeen et al. 
[1,3]  analyzed adjacency and crossings between cerebral fiber pathways of the 
brain using diffusion spectrum imaging (DSI) and tractography, and proposed 
that cerebral white matter pathways form parallel sheets of interwoven paths. 
Catani et al. [2] concluded that the grid pattern is most likely an artifact, biased 
by the limited angular resolution of DSI.  

We believe that in order to accept or reject the sheet structure conjecture, more 
extensive quantitative analyses are needed. Previous work [5] focused on 
evaluating the discrete Lie bracket as a tool to quantitatively assess the presence 
of sheet structure in simulated vector fields. In this work, we extend this 
approach to real dMRI data.  

II. THEORY AND METHODS 

A. Lie bracket theory 
The Lie bracket [𝑉𝑉,𝑊𝑊]𝑝𝑝 is a measure of the 
deviation from 𝑝 when trying to move 
around in an infinitesimal loop along the 
integral curves of the fields 𝑉𝑉 and 𝑊𝑊 (Fig. 
1). If and only if [𝑉𝑉,𝑊𝑊]𝑝𝑝 lies in the plane 
spanned by 𝑉𝑉𝑝𝑝 and 𝑊𝑊𝑝𝑝, i.e., when the normal 
component of the Lie bracket [1] [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥ =
[𝑉𝑉,𝑊𝑊]𝑝𝑝 ⋅ �𝑉𝑉𝑝𝑝 × 𝑊𝑊𝑝𝑝� is equal to zero, the 
vector fields form a sheet at 𝑝 [6]. The Lie 
bracket can be approximated by various 
difference vectors 𝑟|𝑝𝑝 2 according to  

  𝑟|𝑝𝑝(ℎ1,ℎ2) = ℎ1ℎ2[𝑉𝑉,𝑊𝑊]𝑝𝑝 + ∆(ℎ1,ℎ2) ,               (1) 

Where ℎ1 and ℎ2 are walking distances and ∆(ℎ1,ℎ2) an error term that scales 
with ℎ1 and ℎ2. See references [5,7] for details. 

B. Implementation and experiments 
Starting from point 𝑝 in the data, we assign two fiber orientation distribution 
function (fODF) peaks [4] as representative members of vector fields 𝑉𝑉 and 𝑊𝑊.  

We use nearest neighbor streamline tractography using steps of size ∆ℎ to find 
the difference vectors. Each difference vector is based on 4 consecutive 
tractography paths 2 (Fig. 1) of up to 𝑛𝑚𝑎𝑥 = ℎ𝑚𝑎𝑥/∆ℎ streamline steps. At 
each streamline step the local vectors are assigned to one of the fields based on 
their cosine similarity with the vectors at the previous position. Tracts passing 
through voxels with only one peak are ignored. Subsequently, [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥ is 
calculated as an indicator of sheet structure in a simulated dMRI dataset that 
was known to represent a sheet [5,8] and in high resolution mouse brain data.  

III. RESULTS AND DISCUSSION 
Complementing previous results on the method’s dependence on resolution [5], 
Fig. 2 shows the influence of curvature of the present sheet structure on the 
ability to detect it. Fig. 3 shows the presence of sheets formed by the two largest 
fODF peaks. Within the blue demarcation there is clear evidence for the 
presence of sheet structure, while in the yellow area other combinations of 
fODF peaks need to be taken into account before we can conclude anything. 

 
Fig. 2 Diffusion data generated from vector fields 𝑉𝑉 = {1, 0,𝜅𝑥}𝑇 and 𝑊𝑊 = {0, 1,𝜅𝑦}𝑇 defined on 
domain [−10 mm, 10 mm]3 with 1 mm voxel size and 𝜅 the curvature in point 𝑝 = 𝟎. These have zero 
Lie bracket by design and are locally tangent to the surface z(x, y) = 0.5𝜅(x2 + y2). ℎ𝑚𝑎𝑥 = 2.5 𝑚𝑚𝑚𝑚 
and ∆ℎ = 0.1 𝑚𝑚𝑚𝑚. For 𝜅 > 2, [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥ deviates significantly from 0. The number of paths used 
(numbers above each graph) is lower for higher 𝜅, partially causing the increased standard deviation. 

IV. CONCLUSION 
In this work we extend the analysis of the Lie bracket normal component as a 
tool for the detection of sheet structure in artificial vector fields, to vector 
fields derived from diffusion MRI data. We have shown that spatial resolution 
and the curvature influence the ability to detect sheet structures. We present 
preliminary but promising results of a high resolution mouse brain, which 
shows the presence of a sheet formed by two main fODF peaks in correlation 
with a diffusion tensor imaging (DTI) geometry map.  
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Fig. 3 Mouse brain dMRI data with 𝑏 = 4000 𝑠/𝑚𝑚𝑚𝑚2, measured with 120 different directions and 11 𝑏 = 0 images, voxel size 0.043 𝑚𝑚𝑚𝑚 isotropic. (a) Direction encoded fractional anisotropy map. (b) [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥ 
between two largest fODF peaks, with ∆ℎ = 0.043 𝑚𝑚𝑚𝑚 and 𝑛𝑚𝑎𝑥 = 5. The blue location shows a region with low [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥, the yellow location one with noisy [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥. (c) The corresponding DTI geometry map. 

1These authors contributed equally to this work. 
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𝑉 � (𝑝) − �𝛷𝑠𝑉 ∘ 𝛷𝑠𝑊 � (𝑝), where the flow operator 𝛷𝑠𝑋 (𝑝) denotes moving a 

distance 𝑠 along the integral curve of vector field 𝑋 starting from point 𝑝. 
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Fig. 1       Walking loop with �𝛷−𝑠𝑊 ∘ 𝛷−𝑠𝑉  ∘
𝛷𝑠𝑊 ∘ 𝛷𝑠𝑉� (𝑝) 2 the end point. Difference 
vector 𝑟|𝑝𝑝 approximates [𝑉𝑉,𝑊𝑊]𝑝𝑝  [5]. 
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vector fields form a sheet at 𝑝 [6]. The Lie 
bracket can be approximated by various 
difference vectors 𝑟|𝑝𝑝 2 according to  

  𝑟|𝑝𝑝(ℎ1,ℎ2) = ℎ1ℎ2[𝑉𝑉,𝑊𝑊]𝑝𝑝 + ∆(ℎ1,ℎ2) ,               (1) 

Where ℎ1 and ℎ2 are walking distances and ∆(ℎ1,ℎ2) an error term that scales 
with ℎ1 and ℎ2. See references [5,7] for details. 

B. Implementation and experiments 
Starting from point 𝑝 in the data, we assign two fiber orientation distribution 
function (fODF) peaks [4] as representative members of vector fields 𝑉𝑉 and 𝑊𝑊.  

We use nearest neighbor streamline tractography using steps of size ∆ℎ to find 
the difference vectors. Each difference vector is based on 4 consecutive 
tractography paths 2 (Fig. 1) of up to 𝑛𝑚𝑎𝑥 = ℎ𝑚𝑎𝑥/∆ℎ streamline steps. At 
each streamline step the local vectors are assigned to one of the fields based on 
their cosine similarity with the vectors at the previous position. Tracts passing 
through voxels with only one peak are ignored. Subsequently, [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥ is 
calculated as an indicator of sheet structure in a simulated dMRI dataset that 
was known to represent a sheet [5,8] and in high resolution mouse brain data.  

III. RESULTS AND DISCUSSION 
Complementing previous results on the method’s dependence on resolution [5], 
Fig. 2 shows the influence of curvature of the present sheet structure on the 
ability to detect it. Fig. 3 shows the presence of sheets formed by the two largest 
fODF peaks. Within the blue demarcation there is clear evidence for the 
presence of sheet structure, while in the yellow area other combinations of 
fODF peaks need to be taken into account before we can conclude anything. 

 
Fig. 2 Diffusion data generated from vector fields 𝑉𝑉 = {1, 0,𝜅𝑥}𝑇 and 𝑊𝑊 = {0, 1,𝜅𝑦}𝑇 defined on 
domain [−10 mm, 10 mm]3 with 1 mm voxel size and 𝜅 the curvature in point 𝑝 = 𝟎. These have zero 
Lie bracket by design and are locally tangent to the surface z(x, y) = 0.5𝜅(x2 + y2). ℎ𝑚𝑎𝑥 = 2.5 𝑚𝑚𝑚𝑚 
and ∆ℎ = 0.1 𝑚𝑚𝑚𝑚. For 𝜅 > 2, [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥ deviates significantly from 0. The number of paths used 
(numbers above each graph) is lower for higher 𝜅, partially causing the increased standard deviation. 

IV. CONCLUSION 
In this work we extend the analysis of the Lie bracket normal component as a 
tool for the detection of sheet structure in artificial vector fields, to vector 
fields derived from diffusion MRI data. We have shown that spatial resolution 
and the curvature influence the ability to detect sheet structures. We present 
preliminary but promising results of a high resolution mouse brain, which 
shows the presence of a sheet formed by two main fODF peaks in correlation 
with a diffusion tensor imaging (DTI) geometry map.  
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Fig. 3 Mouse brain dMRI data with 𝑏 = 4000 𝑠/𝑚𝑚𝑚𝑚2, measured with 120 different directions and 11 𝑏 = 0 images, voxel size 0.043 𝑚𝑚𝑚𝑚 isotropic. (a) Direction encoded fractional anisotropy map. (b) [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥ 
between two largest fODF peaks, with ∆ℎ = 0.043 𝑚𝑚𝑚𝑚 and 𝑛𝑚𝑎𝑥 = 5. The blue location shows a region with low [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥, the yellow location one with noisy [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥. (c) The corresponding DTI geometry map. 
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Fig. 1       Walking loop with �𝛷−𝑠𝑊 ∘ 𝛷−𝑠𝑉  ∘
𝛷𝑠𝑊 ∘ 𝛷𝑠𝑉� (𝑝) 2 the end point. Difference 
vector 𝑟|𝑝𝑝 approximates [𝑉𝑉,𝑊𝑊]𝑝𝑝  [5]. 
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Abstract 
The theory of cities, which has grown out of the use of space syntax techniques in 
urban studies, proposes a curious mathematical duality: that urban space is locally 
metric but globally topo-geometric. Evidence for local metricity comes from such generic 
phenomena as grid intensification to reduce mean trip lengths in live centers, the fall of 
movement from attractors with metric distance, and the commonly observed decay of 
shopping with metric distance from an intersection. Evidence for global topo-geometry 
come from the fact that we need to utilize both the geometry and connectedness of the 
larger scale space network to arrive at configurational measures which optimally 
approximate movement patterns in the urban network. It might be conjectured that there 
is some threshold above which human being use some geometrical and topological 
representation of the urban grid rather than the sense of bodily distance to making 
movement decisions, but this is unknown. The discarding of metric properties in the 
large scale urban grid has, however, been controversial. Here we cast a new light on 
this duality. We show first some phenomena in which metric and topo-geometric 
measures of urban space converge and diverge and in doing so clarify the relation 
between the metric and topo-geometric properties of urban spatial networks. We then 
show how metric measures can be used to create a new urban phenomenon: the 
partitioning of the background network of urban space into a network of semi-discrete 
patches by applying metric universal distance measures at different metric radii, 
suggesting a natural spatial area-isation of the city at all scales. On this basis we 
suggest a key clarification of the generic structure of cities: that metric universal 
distance captures exactly the formally and functionally local patchwork properties of the 
network, most notably the spatial differentiation of areas, while the topo-geometric 
measures identifying the structure which overcomes locality and links the urban 
patchwork into a whole at different scales.  

Introduction: The Dual Urban Network 
The theory of cities, which has grown out of the use of space syntax 
techniques in urban studies, proposes that urban street networks have 
a dual form: a foreground network of linked centres at all scales, and a 
background network of primarily residential space in which the 
foreground network is embedded. (Hillier 2001/2) The theory also 
notes a mathematical duality. On the one hand, measures which 
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gentrifying area of Clerkenwell, and 7 is a popular and active area 
around The Cut on the South side of the river. Again the larger 
patches seem to be broadly reflected in functional differentiation. 

But of course, we can also use the scattergrams to explore areal 
differentiations, either by selecting peaks or troughs in the scattergram 
and seeing where they are in the maps, or vice versa. If we take the 
intermediate level of analysis of central London, as in Figure 14, the 
small leftmost peak in the scattergram corresponds very closely with 
the main tourist area of London, as we saw in Figure 13. The second, 
higher peak is the City of London, the financial centre and historic 
core of London. This peak turns out to conceal another. If instead of 
selecting the peak in the scattergram we select an area from the map, 
in this case the very active residential, tourist and shopping area 
between the Kings Road and the Fulham Road in Chelsea, we find it 
take the form of a peak hidden by the higher peak of the City of 
London. The higher peaks to the right should be treated with caution, 
since their location may subject them to the edge effect by which the 
system boundary cuts deeper nodes from peripheral locations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What about more regular grids, say Manhattan island? Figure 15 
shows the patchwork for Manhattan at a radius of 2 kilometres, and 
scattergram which shows a series of peaks.  

 

 

 

 

 

 

 

 

Figure 14: 

Selecting from the 
scattergrams to show peaks 
are areas in Central London 

Figure 15: 

Manhattan patches at a 2km 
radius 
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The Lamellar Structure of the Brain Fiber Pathways 7

Figure 1: Several examples of idealized fiber distribution inside a voxel and an
expected pairwise crossing fiber distribution density, including a single family
of parallel fibers (A), two families of crossing parallel fibers (B), two families of
crossing diverging fibers (C), and a random fiber distribution (D).

If both families of fibers are not strictly parallel but either diverging or
converging (or just have some angular spread δθ ), their crossings will no
longer be confined to two bins but instead will be spread out across the num-
ber of bins located in stripes with about δθ half-width adjacent to 0 degrees
and θc bins. The crossing angle distribution density will roughly satisfy

∫ δθ

0
f (θ )dθ ≈

∫ θc+δθ

θc−δθ

f (θ )dθ ≈ 0.5,

as shown in Figure 1C.

Pairwise crossing fiber distribution density

(A) a single family of parallel fibers

(B) two families of crossing 
parallel fibers

(C) two families of crossing 
diverging fibers

(D) A random fiber distribution



A statistical assessment using GO-ESP

Pairwise crossing fiber distribution density

f(✓) =
nN✓

⇥Nc

N✓ = number of crossing in each bin i

Nc = total number of crossings

n = number of bins

Z ⇥

0
f(✓) d✓ = 1



A statistical assessment using GO-ESP

The main claim of Wedeen et al. is that the white matter 
has a grid-like organization formed by crossing of quasi-
orthogonal sheets of fibers.

Though the crossing angles are not necessarily 90 degrees, 
they are nevertheless assumed to show some distinction 
between directions, which would translate into a pairwise 
crossing angle distribution containing peaks at both small 
and large angles.



A statistical assessment using GO-ESP

Our  results  do  not  find  any  quantitative  statistical 
evidence that this is the case. 

The Lamellar Structure of the Brain Fiber Pathways 2541

Figure 2: Pairwise crossing fiber angle distributions for the whole human brain.
(A) Stair-step plot of distribution for 1,722,128,284,856 fiber crossings of MGH
1010 subject from the Human Connectome Project. The plot was obtained by
selecting 2,494,224 fibers with 60 mm or more total length from the total of
5 million seed points and binning all pairwise angles θ from 321,631 voxels
with two or more fibers in 256 bins of 0.35 degrees angular size. A fraction of
fibers collected in each bin is shown on the ordinate axis. (B) Angle distribution
rescaled by cos θ , which takes into account the difference in solid angle measures
of each bin. Pairwise fiber angle distributions of six different subjects (C–H)
scanned on different hardware (GE or Siemens) and processed with different
parameters (including removing the restriction on fiber length, and changing
the threshold to select different ranges of deep white matter) all show similar
and repeatable whole brain pairwise crossing distributions.

Angle distribution rescaled by cos θ , 
which takes into account the difference in 
solid angle measures of each bin. 

Pairwise crossing fiber angle 
distribution for whole human 
brain.



A statistical assessment using GO-ESP
Pairwise crossing fiber angle distributions in several individual voxels 

Single fiber

Approximate 10 degrees 
crossing of two fibers 

Crossing of multiple fibers.

A B C

D E F

G H I

C
r
o
s
s
i
n
g
fi
b
e
r
d
i
s
t
r
i
b
u
t
i
o
n
d
e
n
s
i
t
y

C
r
o
s
s
i
n
g
fi
b
e
r
d
i
s
t
r
i
b
u
t
i
o
n
d
e
n
s
i
t
y

C
r
o
s
s
i
n
g
fi
b
e
r
d
i
s
t
r
i
b
u
t
i
o
n
d
e
n
s
i
t
y

A B C

D E F

G H I

C
r
o
s
s
i
n
g
fi
b
e
r
d
i
s
t
r
i
b
u
t
i
o
n
d
e
n
s
i
t
y

C
r
o
s
s
i
n
g
fi
b
e
r
d
i
s
t
r
i
b
u
t
i
o
n
d
e
n
s
i
t
y

C
r
o
s
s
i
n
g
fi
b
e
r
d
i
s
t
r
i
b
u
t
i
o
n
d
e
n
s
i
t
y

A B C

D E F

G H I

C
r
o
s
s
i
n
g
fi
b
e
r
d
i
s
t
r
i
b
u
t
i
o
n
d
e
n
s
i
t
y

C
r
o
s
s
i
n
g
fi
b
e
r
d
i
s
t
r
i
b
u
t
i
o
n
d
e
n
s
i
t
y

C
r
o
s
s
i
n
g
fi
b
e
r
d
i
s
t
r
i
b
u
t
i
o
n
d
e
n
s
i
t
y



NECO_a_00896-Galinsky neco.cls September 1, 2016 1:34

U
nc

or
re

ct
ed

Pr
oo

f

14 V. Galinsky and L. Frank

Figure 5: Locations of the voxels shown in A, B, C, and D of Figure 4 and in
B, C, D, and F panels of Figure 3. The parula-colored overlay shows the map
of fiber counts across the slices. It can be clearly seen that the fibers used for
our analysis are located in the areas of deep white matter and major tracts, the
primary focus of Wedeen et al. (2012a).

Another set of individual pairwise crossing angle distributions from
a contiguous block of 3 × 3 voxels is shown in Figure 7. The set clearly
indicates continuity of the distribution across voxel boundaries with small
consistent changes from voxel to voxel. An abundance of various angles
of crossing fibers from ! 20 to 90 degrees is also evident in each of these
adjacent voxels.

The position of this block of 3 × 3 voxels is shown in panel A of Figure 8.
For comparison, panel B shows (by label E) the location of a relatively neigh-
boring voxel where the only histogram has been spotted (See Figure 3E)
that resembles the crossing sheet structure expected to be common in the
deep white matter and major tracts area according to the claims by Wedeen
et al. (2012a).

Several more examples of fiber tracts crossing in different areas of dif-
ferent subjects are shown in Figure 11 in the appendix, again with the
low-resolution videos embedded in the online supplement and links to the
high-definition videos referenced. The overall fiber tracts structure seems

A statistical assessment using GO-ESP

Galinsky and Frank, Neural. Comp. 2016



A statistical assessment using GO-ESP

The Lamellar Structure of the Brain Fiber Pathways 2541

Figure 2: Pairwise crossing fiber angle distributions for the whole human brain.
(A) Stair-step plot of distribution for 1,722,128,284,856 fiber crossings of MGH
1010 subject from the Human Connectome Project. The plot was obtained by
selecting 2,494,224 fibers with 60 mm or more total length from the total of
5 million seed points and binning all pairwise angles θ from 321,631 voxels
with two or more fibers in 256 bins of 0.35 degrees angular size. A fraction of
fibers collected in each bin is shown on the ordinate axis. (B) Angle distribution
rescaled by cos θ , which takes into account the difference in solid angle measures
of each bin. Pairwise fiber angle distributions of six different subjects (C–H)
scanned on different hardware (GE or Siemens) and processed with different
parameters (including removing the restriction on fiber length, and changing
the threshold to select different ranges of deep white matter) all show similar
and repeatable whole brain pairwise crossing distributions.

6 subjects
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The Lamellar Structure of the Brain Fiber Pathways 11

Figure 3: Pairwise crossing fiber angle distributions in several individual voxels
showing examples of a single fiber (A), approximate 10, 20, 45, and 90 degrees
crossing of two fibers (B, C, D, and E), and crossing of multiple fibers (F, G, H,
and I).

3.2 Statistical Validation of Crossing Resolution. We emphasize that
our claim of 8 degree resolution is very sound statistically. For example, with
N f ∼ 104 fibers in Figure 3B, Nc = N f (N f − 1)/2 and about ∼ 5 · 107 total
fiber crossings were used to generate the histogram. The 0.015 difference
between the peak that represents the first family of fibers and the minimum
that separates it from the second peak roughly corresponds to 600σ (σ is
∼ 2.4 · 10−5 from 2.7). Even several peaks in the 50 degree to 70 degree range
of Figure 3I (with as small 0.001 height of the smallest peak) correspond
to a range from 50σ to 150σ . While a more accurate significance estimate
could be easily constructed from P-value bounds based on tail estimates for
the binomial distribution itself, the normal approximation-based estimates

A statistical assessment using GO-ESP

Pairwise crossing fiber angle distributions in several individual voxels 

(A) 
Single fiber

(B,C,D,E): 
approximate 10, 20, 45, and 90
 degrees crossing of two fibers 

(F, G, H, I): 
Crossing of multiple fibers.

⇡ 8� 600�



So what is the structure of the 
 Brain Fiber Pathways?
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The Lamellar Structure of the Brain Fiber Pathways 15

Figure 6: Locations of the voxels shown in A, B, C, and D of Figures 4 and
5 and panels in B, C, D, and F of Figure 3. The RGB-colored overlays show
the directional information for the transition probabilities (Galinsky & Frank,
2015) used in seeding (panels A, C, and E) and for the mean fiber directions
obtained by our analysis as a result of processing an ensemble of tracts in ev-
ery voxel (panels B, D, and F). All four voxels marked by labels inside the
panels show rather complicated crossing structures, even those located deep
in areas of predominantly common colors–that is, with the same major direc-
tions of transitional probabilities or mean fiber directions (i.e., voxels labeled as
A and C).

to be more consistent with small angle treelike branching of tracts rather
than with near-orthogonal gridlike crossing of fiber sheets. Treelike branch-
ing structures are well known in neuronal growth, and their existence has
been posited on a range of evolutionary factors (Mitchison, 1991; Laughlin
& Sejnowski, 2003; Sugimura, Shimono, Uemura, & Mochizuki, 2007; Wen,
Stepanyants, Elston, Grosberg, & Chklovskii, 2009; Jan & Jan, 2010; Gib-
son & Ma, 2011). Our finding of this structure on the macro (brain) scale,
while remarkable, is thus perhaps not surprising in light of this similarity

A statistical assessment using GO-ESP

Galinsky and Frank, Neural. Comp. 2016
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16 V. Galinsky and L. Frank

Figure 7: Pairwise crossing fiber angle distributions in a 3 × 3 block of adjacent
voxels showing the continuity of distributions across voxel boundaries. The
fraction of fiber crossings in the voxel is shown on the ordinate axis.

to the microscale (neuronal) geometry, as well as the proliferation of such
structures in complex biological systems (Ochoa-Espinosa & Affolter, 2012).

3.4 The Lamellar Structure of Fiber Pathways. The capabilities of
our GO-ESP method for constructing accurate quantitative measures of
complex fiber distributions, as demonstrated above, provide a unique
opportunity to investigate the possibility of a quantitative measure of
the geometrical structure of brain fibers. One such measure became ap-
parent in our recent investigations and is shown in Figure 9, where we
have plotted fiber pathways colored by the direction of the local vortic-
ity ω = ∇ × v ≡ rot(v). For the v field, we use ψ (r, k) (See equation 2.1;
Galinsky & Frank, 2015, for details) with k fixed for a given family of fibers
at location r. It is well known from vector calculus that the extreme case

A statistical assessment using GO-ESP

Pairwise crossing fiber angle distributions in a 3×3 block of adjacent voxels 
showing the continuity of distributions across voxel boundaries. 

The fraction of fiber crossings in the voxel is shown on the ordinate axis.



A statistical assessment using GO-ESP

“…. confirms with high confidence that the brain grid theory 
(Wedeen et al., 2012a) is not supported by the evidence.”

LETTER Communicated by Adam Anderson

The Lamellar Structure of the Brain Fiber Pathways
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We present a quantitative statistical analysis of pairwise crossings for all
fibers obtained from whole brain tractography that confirms with high
confidence that the brain grid theory (Wedeen et al., 2012a) is not sup-
ported by the evidence. The overall fiber tracts structure appears to be
more consistent with small angle treelike branching of tracts rather than
with near-orthogonal gridlike crossing of fiber sheets. The analysis uses
our new method for high-resolution whole brain tractography that is ca-
pable of resolving fibers crossing of less than 10 degrees and correctly
following a continuous angular distribution of fibers even when the in-
dividual fiber directions are not resolved. This analysis also allows us
to demonstrate that the whole brain fiber pathway system is very well
approximated by a lamellar vector field, providing a concise and quanti-
tative mathematical characterization of the structural connectivity of the
human brain.

1 Introduction

Advances in modern digital imaging methods are revolutionizing a wide
range of scientific disciplines. One of these truly revolutionary approaches
that has become ubiquitous in basic neuroscience research and has the po-
tential to have significant impact on a wide range of clinical applications is
the noninvasive reconstruction of neural tissue fiber pathways from volu-
metric diffusion tensor magnetic resonance imaging (DTI) data. The basic
DTI procedure is to collect multiple image volumes (a Cartesian sampling
of image space), each with a different combination of the magnitude and
direction of the diffusion sensitivity. The standard procedure for analyzing
these data is to reconstruct the local (i.e., voxel) diffusion profile from this

Neural Computation 28, 2533–2556 (2016) c⃝ 2016 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00896



So what is the Geometric Structure of 
 Brain Fiber Pathways?



The Lamellar Structure of the 
 Brain Fiber Pathways

Galinsky and Frank, Neural. Comp. 2016
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Reviews

Science: Rejected

Referee 1:  “The science is sound and I believe that it provides an 
important contribution to the current debate around the advantages and 
pitfalls of using neuroimaging to study connectivity.”

Referee 2:  “…the authors provide unreasonable claims about the 
potential of their tractography methodology … this leads them to provide 
charts accounting for millions of crossing in one single voxel that are just 
beyond reach using diffusion imaging, because of the ill-posedness 
mentioned by the authors.”



Reviews

Science: Rejected

Referee 1:   
“The science is sound and I believe that it provides an important contribution to the 
current debate around the advantages and pitfalls of using neuroimaging to study 
connectivity.”

Referee 2:   
“…the authors provide unreasonable claims about the potential of their 
tractography methodology … this leads them to provide charts accounting for 
millions of crossing in one single voxel that are just beyond reach using diffusion 
imaging, because of the ill-posedness mentioned by the authors.” 

The “most frequent” crossing angle of 18 degrees observed in Fig 1 could just be 
related to the fan structure of most of the bundles rather than to crossing. 

“…the authors discard too rapidly the theory of Van Wedeen that may have some 
links with this lamellar structure. Focusing on 90 degree crossing is misleading..”



Reviews

NeuroImage: Rejected
Referee 1:   
“much of the results seem anecdotal and the figures don't convey the main 
findings”

Referee 2:   
“…in my opinion, still fails to correctly address the merits and pitfalls of that 
[Wedeen] work.”

Referee 3:   
“… the current manuscript does not seem to address "the main finding of their 
study: the existence of sheet structure. This structure does not depend on fiber 
orthogonality or the absence thereof" (Wedeen et al. (2012a)). The orthogonal angle 
hypothesis of Wedeen et al. (2012b) can be seen as a rather separate one, and was 
already addressed by Catani et al. (2012).”


