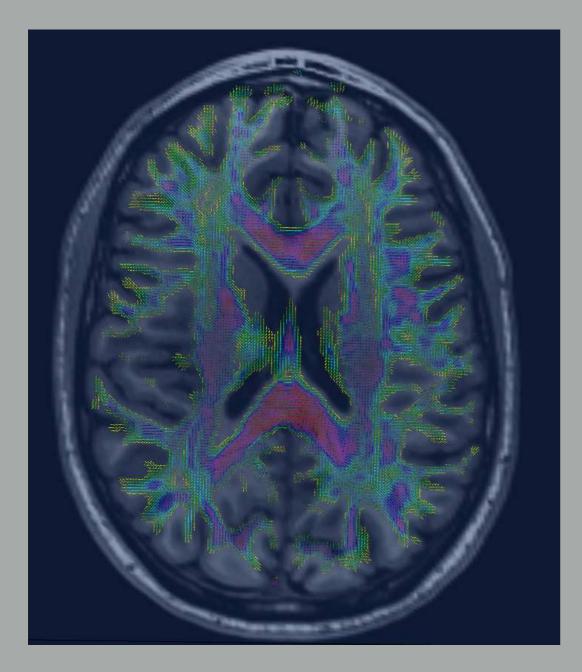
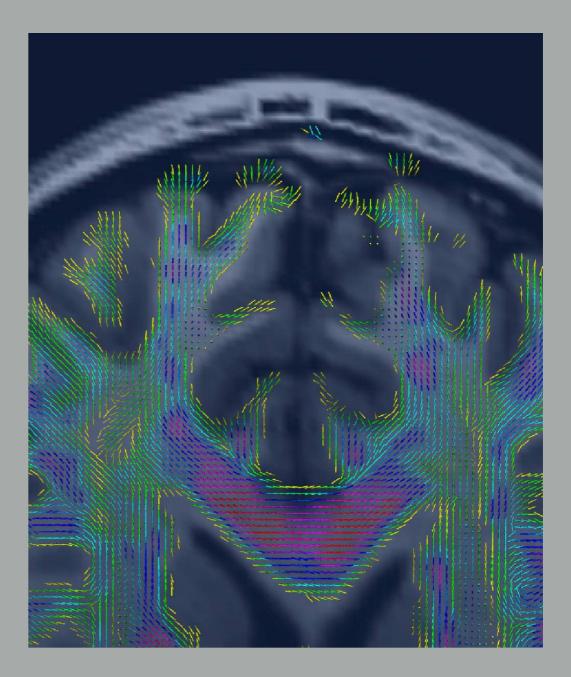
Lecture 15 Fiber Tract Mapping

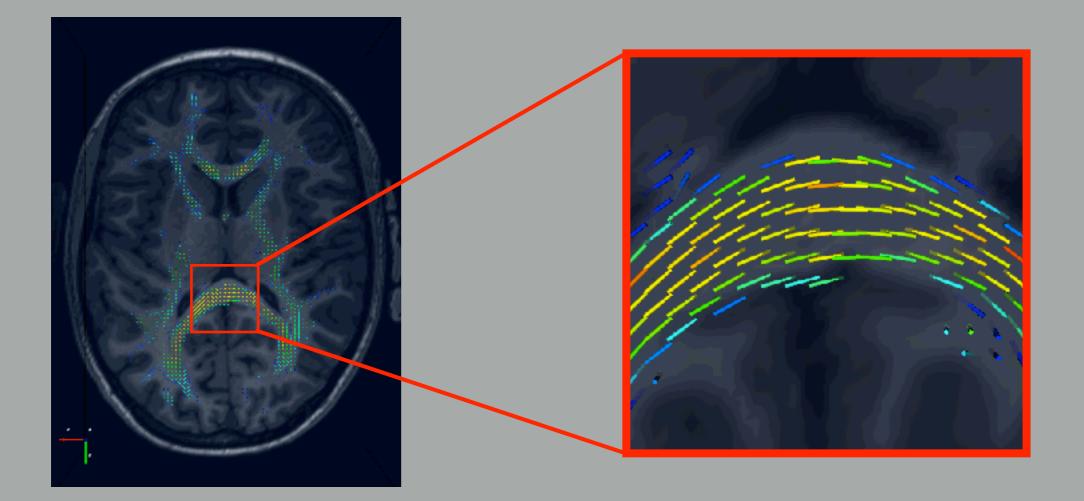
Principal Eigenvectors





FIBER ORIENTATION

The Gateway to Connectivity!

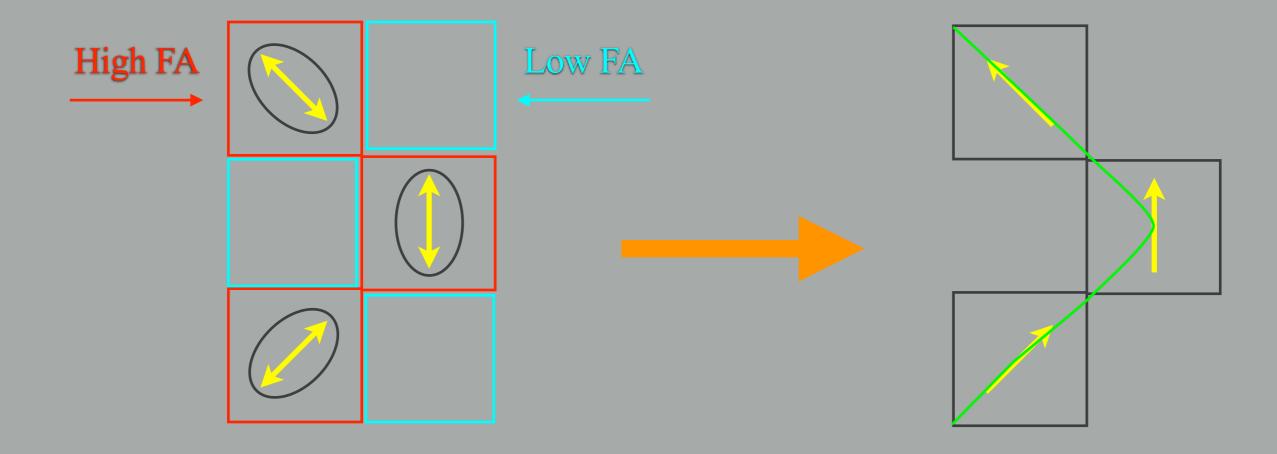


Aligned fibers in the corpus callosum

STREAMLINE BASED TRACTOGRAPHY

Estimated orientation

Flow vector field



principal direction

"tractography"

Deterministic methods

Connect voxels (Conturo)
FACT (Mori,DTI Studio)
Path integral (Basser, Tuch)

Deterministic methods

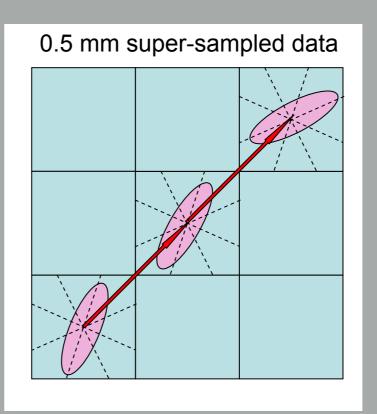
Connect voxels (Conturo)
FACT (Mori,DTI Studio)
Path integral (Basser, Tuch)

Connect voxels (Conturo, 1999 PNAS)

Resample tensor (eg from 2.5mm to .5mm)

Follow voxel in direction of PEV (both directions)

Stop when FA low

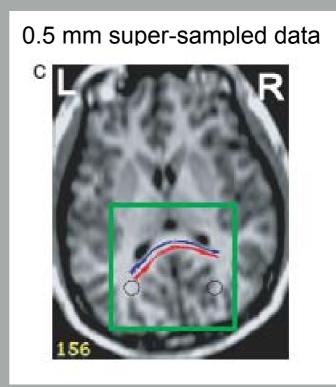


Connect voxels (Conturo, 1999 PNAS)

Resample tensor (eg from 2.5mm to .5mm)

Follow voxel in direction of PEV (both directions)

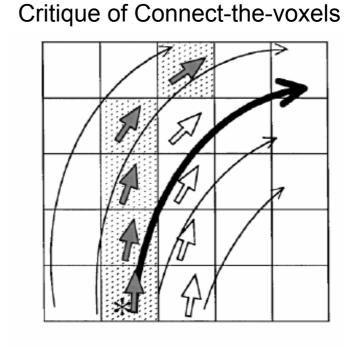
Stop when FA low



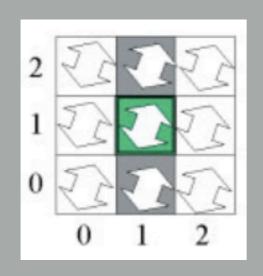
Fiber Assignment by Continuous Tracking (FACT) (Mori 1999)

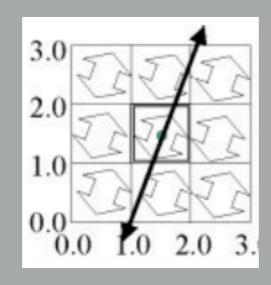
Start at seed and follow PEV until hit edge of voxel

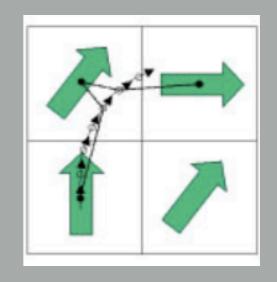
Move to next voxel tensor, repeat



Fiber Assignment by Continuous Tracking (FACT)







Discrete: voxel connected to adjacent one to which it "points"

Continuous Linear: Line is propagated

Continuous Non-linear: Line is weighted by distanced weighted average of the surrounding vectors

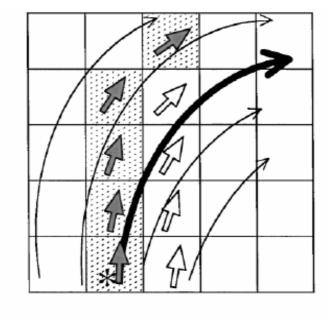
Mori & Van Zijl, NMR Biomed 2002

Fiber Assignment by Continuous Tracking (FACT) (Mori 1999)

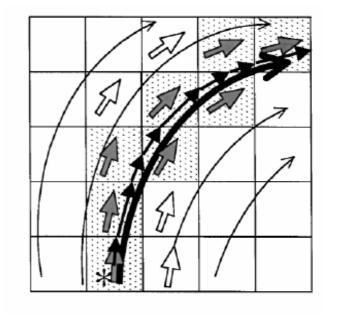
Start at seed and follow PEV until hit edge of voxel

Move to next voxel tensor, repeat

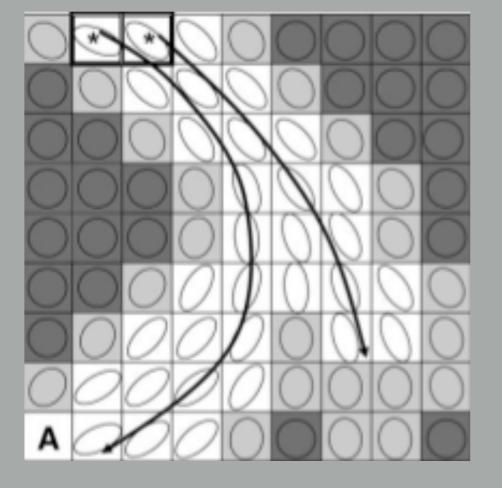
Interpolate between data points

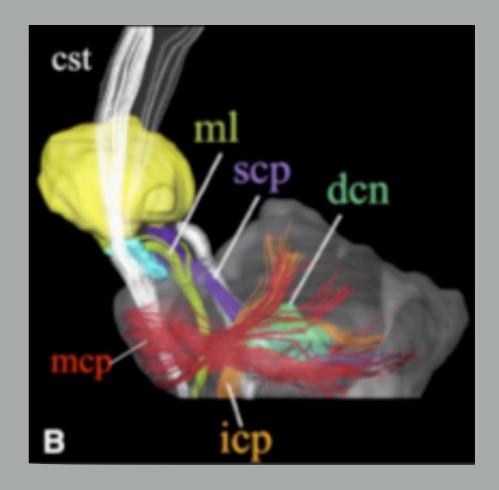


Modified algorithm



FACT



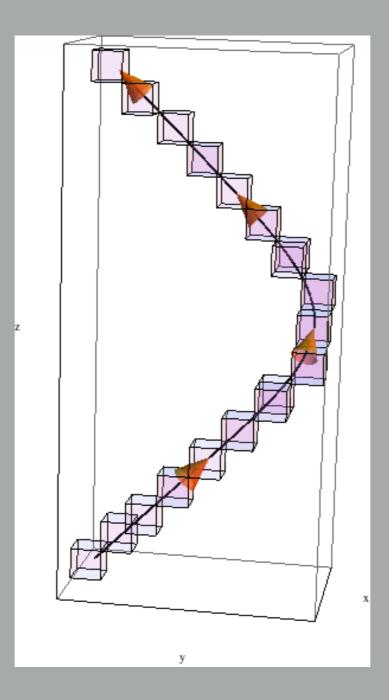


Mori & Zhang, Neuron 2006

Path Integral method (Basser 2000)

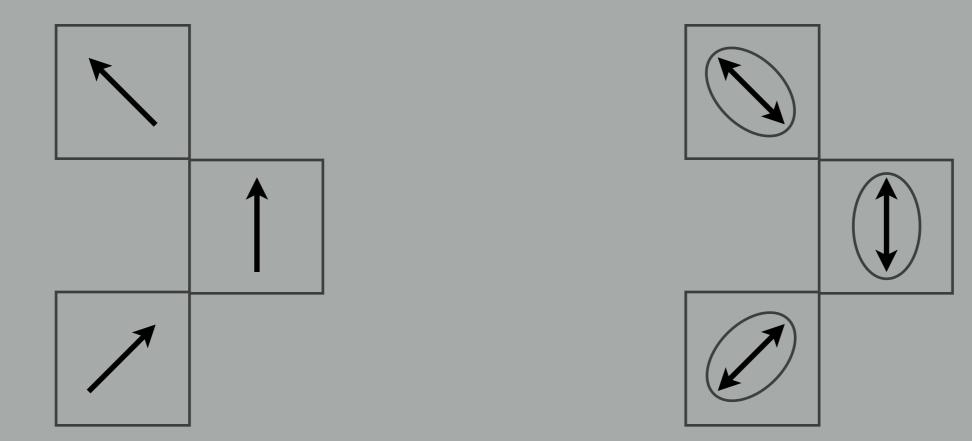
PEV direction is considered to be path tangent

Tracing the Principal Eigenvectors

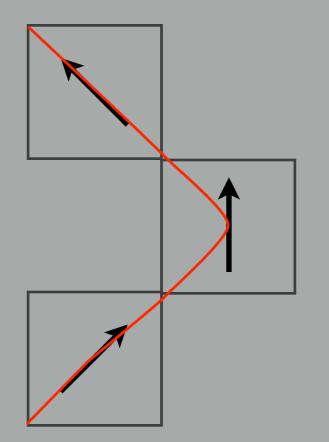


Flow vector field

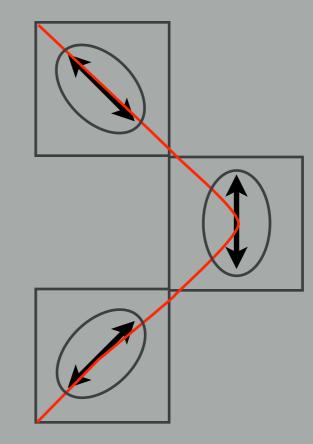
Principal eigenvector field



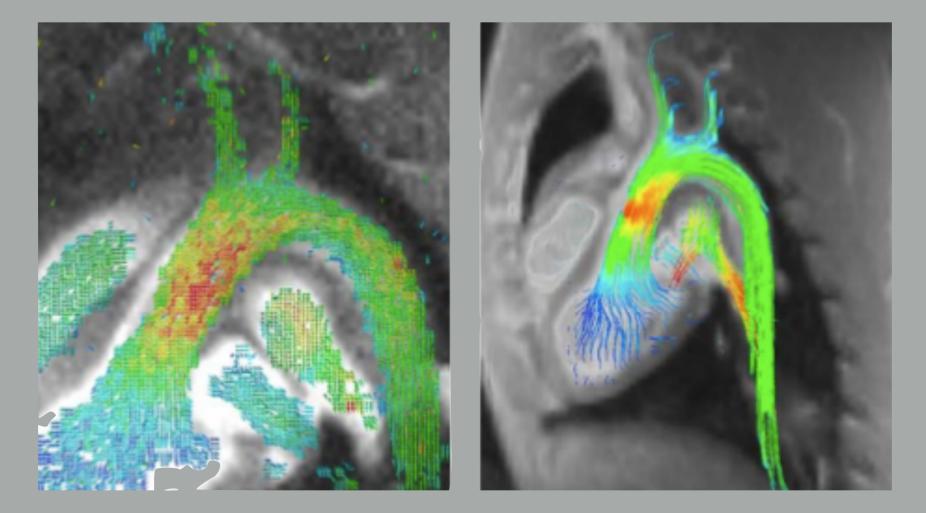
Flow vector field



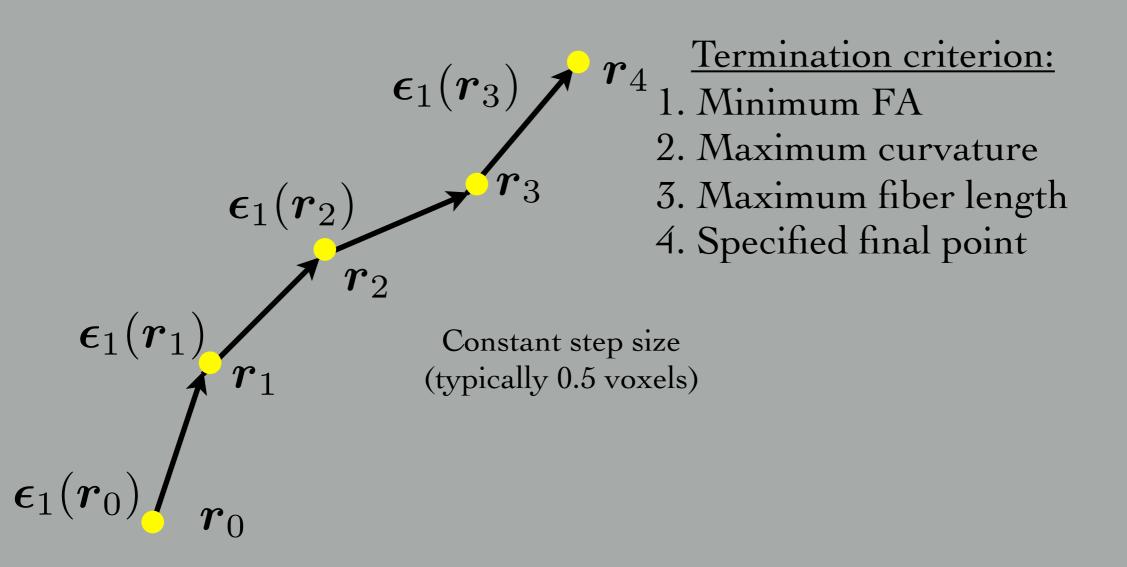
Principal eigenvector field



Path traced by a massless particle in a velocity vector field



R. Unterhinninghofen, et. al.



 Deterministic
Integration of principal eigenvector
Requires only diffusion tensor D but does not depend on underlying model for diffusion (i.e., can be any type of fiber)

Space curves (Basser, et. al.)

$$\frac{d\boldsymbol{r}(s)}{ds} = \boldsymbol{t}(s)$$

$$\boldsymbol{r}(s) = ext{trajectory}$$

t(s) = tangent to r(s) at s

 $s = \operatorname{arc} \operatorname{length}$

Assert: Principal eigenvector lies in direction of tangent

Assertion: Principal eigenvector e_1 lies in the direction of the tangent t(s)

 $\boldsymbol{t}(s) = \boldsymbol{e}_1(\boldsymbol{r}(s))$

$$\frac{d\boldsymbol{r}(s)}{ds} = \boldsymbol{t}(s)$$

can then be written

$$\frac{d\boldsymbol{r}(s)}{ds} = \boldsymbol{e}_1(\boldsymbol{r}(s))$$

$$\frac{d\boldsymbol{r}(s)}{ds} = \boldsymbol{e}_1(\boldsymbol{r}(s))$$

$$\boldsymbol{t}(s) = \boldsymbol{e}_1(\boldsymbol{r}(s))$$

Solve for $\boldsymbol{r}(s)$ with initial condition

$$\boldsymbol{r}(0) = \boldsymbol{r}_o$$

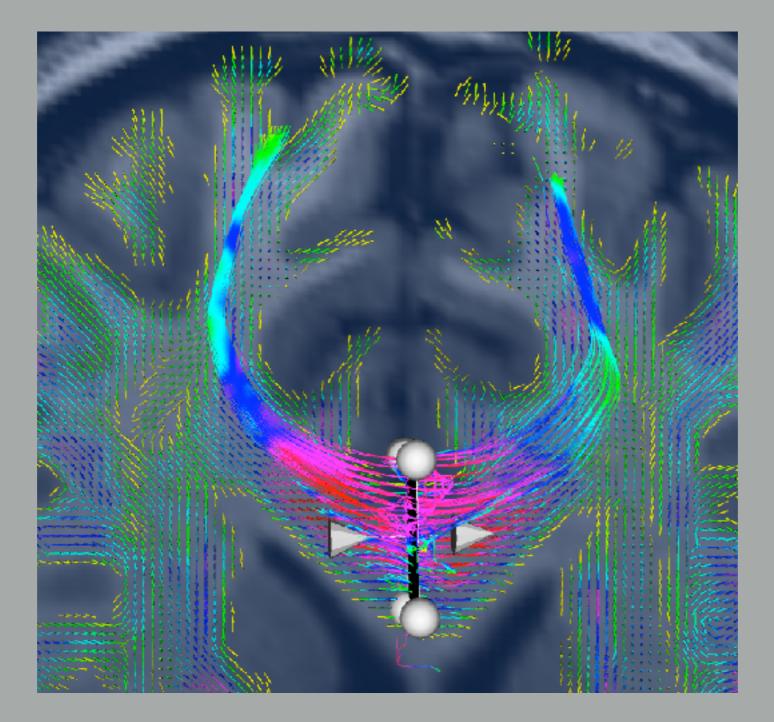
Euler's Method

$$\frac{d\boldsymbol{r}(s)}{ds} = \boldsymbol{e}_1(\boldsymbol{r}(s))$$

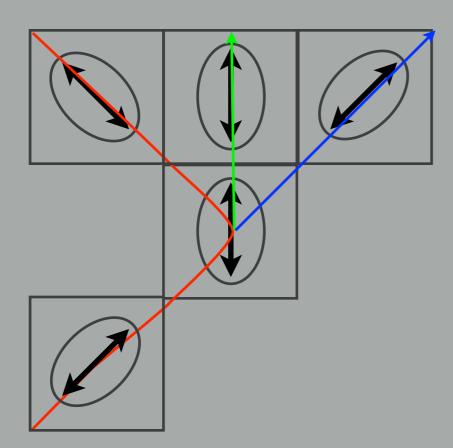
$$\boldsymbol{t}(s) = \boldsymbol{e}_1(\boldsymbol{r}(s))$$

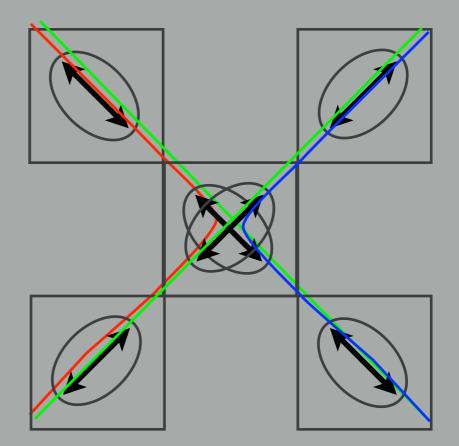
Solve for initial conditions

$$\boldsymbol{r}(0) = \boldsymbol{r}_{c}$$



Streamlines: Trouble Ahead?





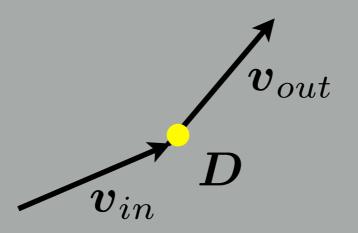
path ambiguity

crossing fibers

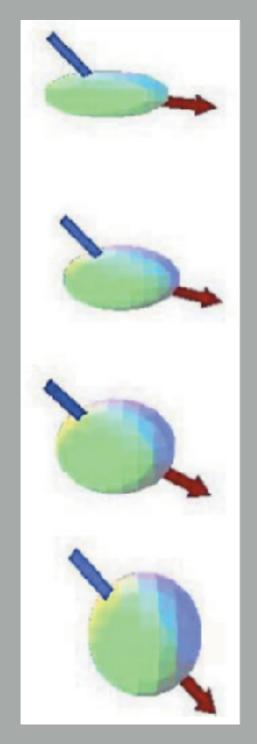
Tensorlines

Taking into account regions of low FA $v_{out} = D \, v_{in}$

Fiber direction is deflected by tensor in direction of principal eigenvector



Tensorlines

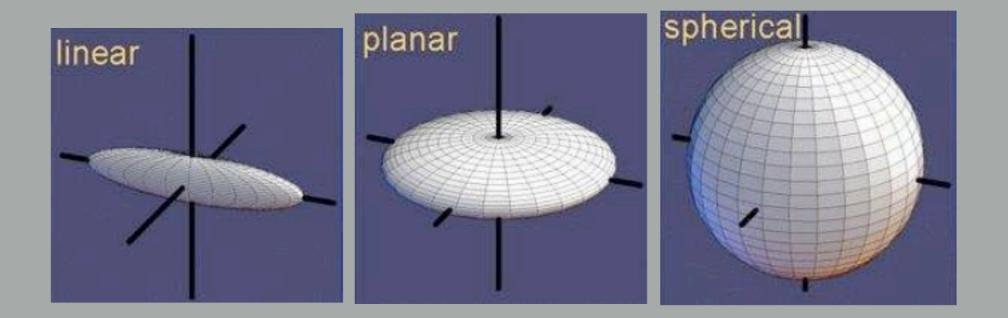


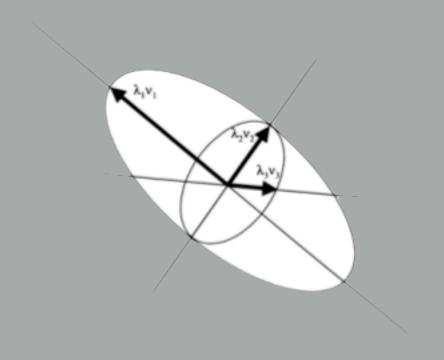
highly anisotropic - large deflection

spherical - no deflection

from Mori & Zhang

Anisotropy Indices





- Let $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 0$.
- Linear: $\lambda_1 \gg \lambda_2 \simeq \lambda_3$
- Planar: $\lambda_1 \simeq \lambda_2 \gg \lambda_3$
- Spherical: $\lambda_1\simeq\lambda_2\simeq\lambda_3$

Anisotropy Indices

$$c_l = \frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2 + \lambda_3}$$
 linear

$$c_p = \frac{2(\lambda_2 - \lambda_3)}{\lambda_1 + \lambda_2 + \lambda_3}$$
 planar

$$c_s = \frac{3\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3}$$
 spherical

Westin, et. al.

Tensorlines

Weighted average of tensor deflected vectors

$$\boldsymbol{v}_{new} = c_l \boldsymbol{v}_1 + (1 - c_l) \tilde{\boldsymbol{v}}_l$$

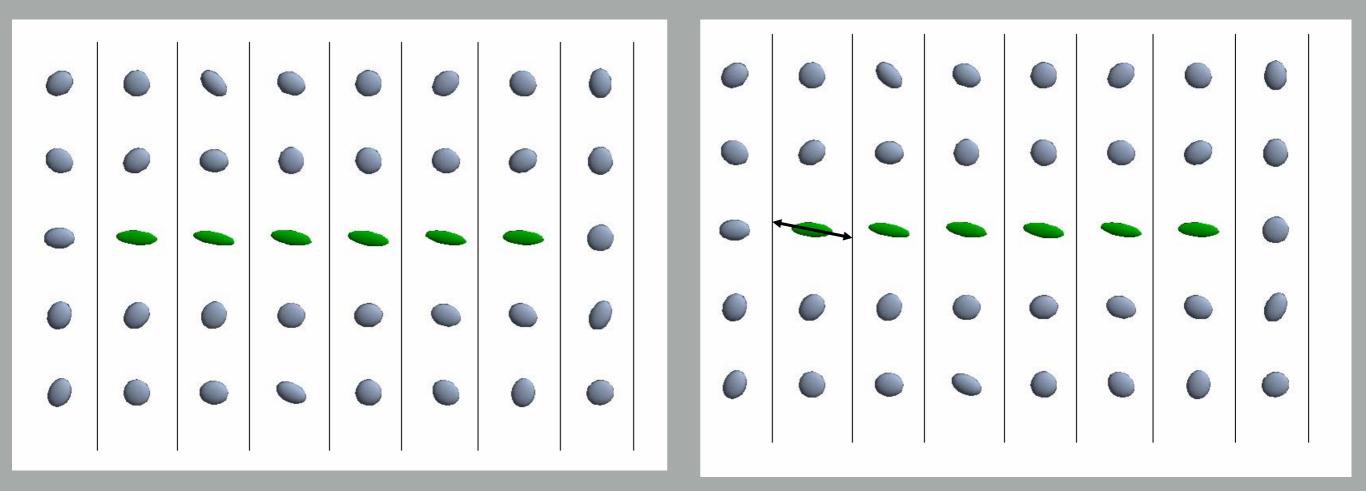
$$\tilde{\boldsymbol{v}} = f\boldsymbol{v}_{in} + (1-f)\boldsymbol{v}_{out} \quad , \quad 0 \le f \le 1$$

$$\boldsymbol{v}_{out} = \boldsymbol{D} \, \boldsymbol{v}_{in}$$

1

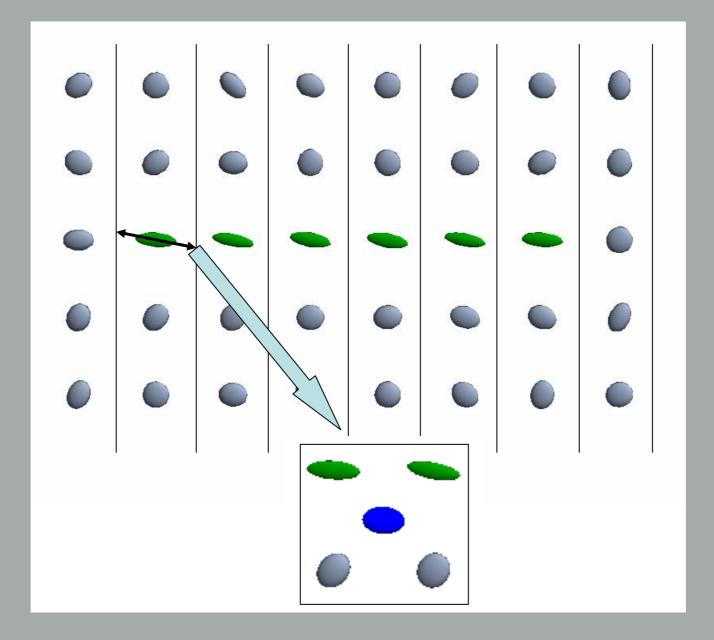
Weinstein, et. al.

Tensor interpolation



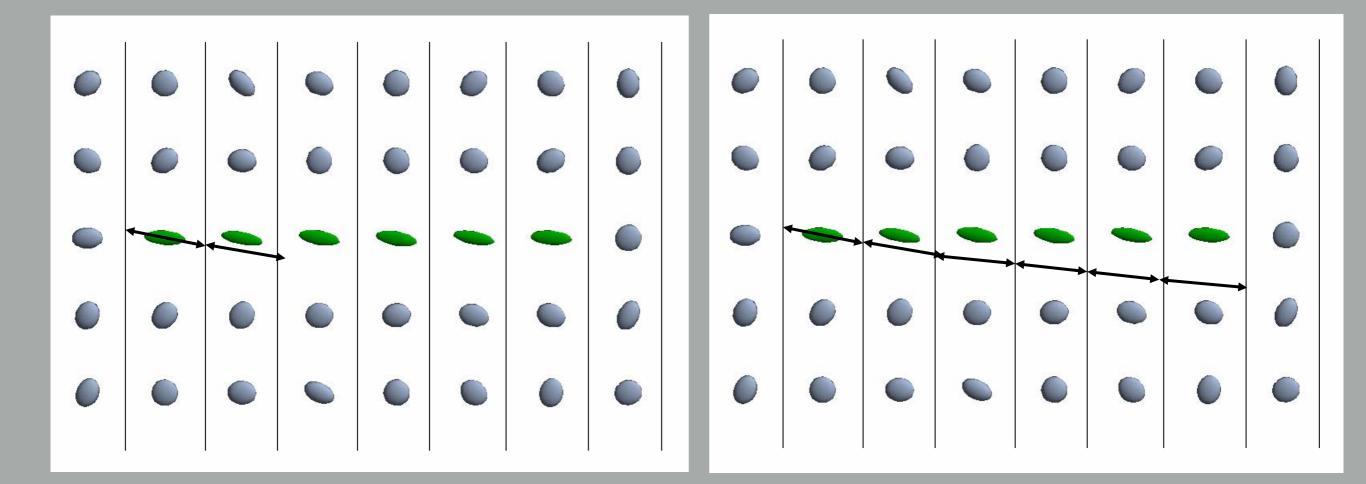
from Wandell

Tensor interpolation



interpolate new tensor at endpoint ... from Wandell

Tensor interpolation

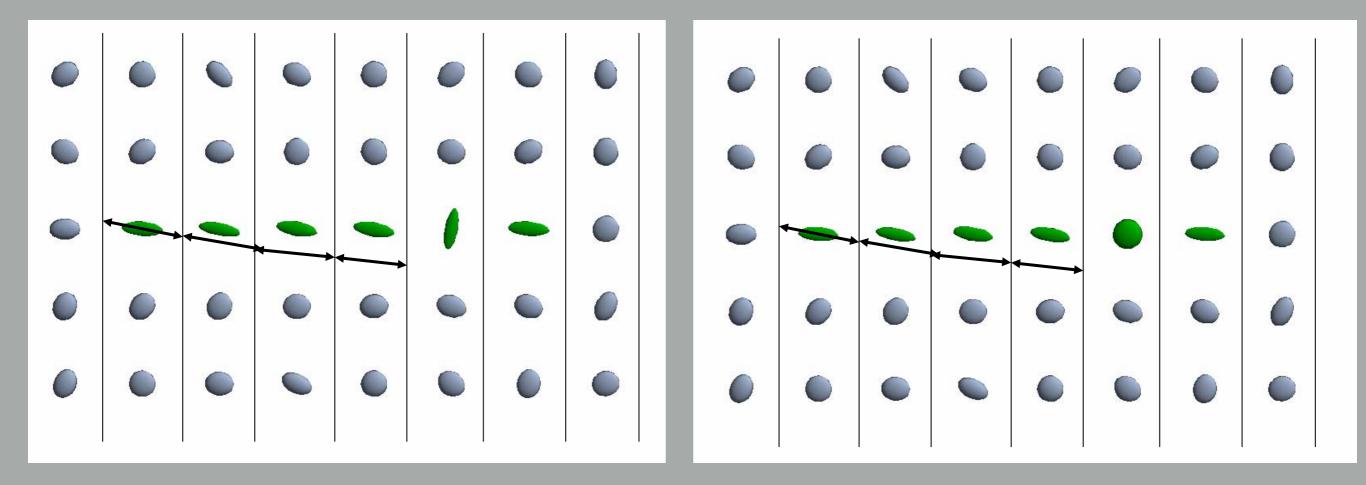


interpolation ...

repeat...

from Wandell

Termination

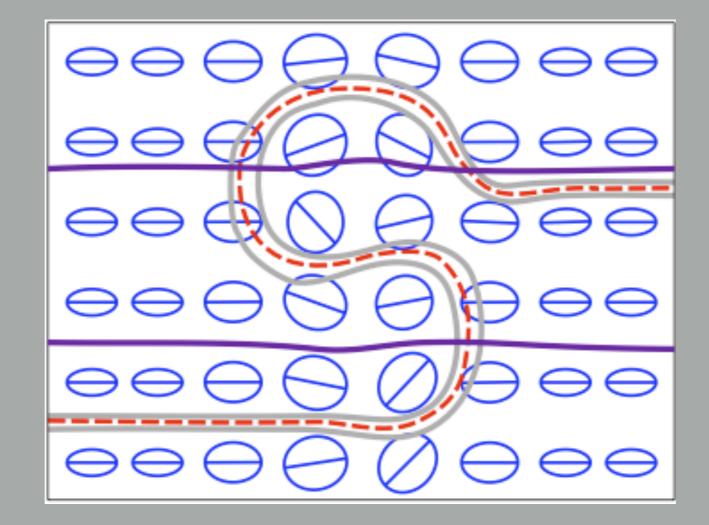


anisotropy

angle

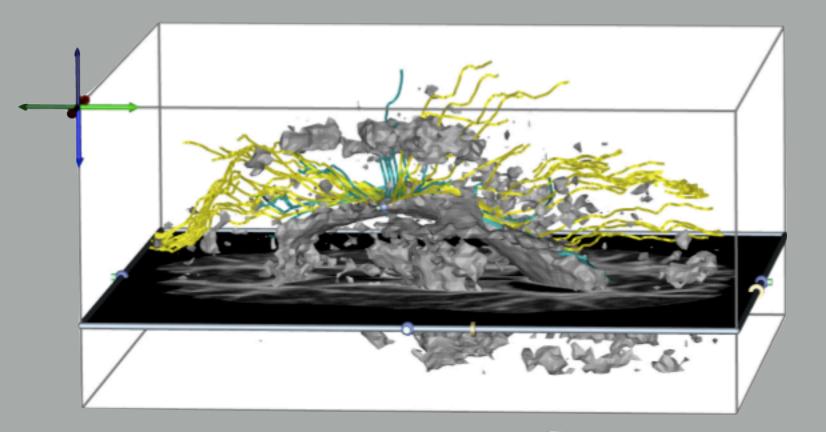
from Wandell

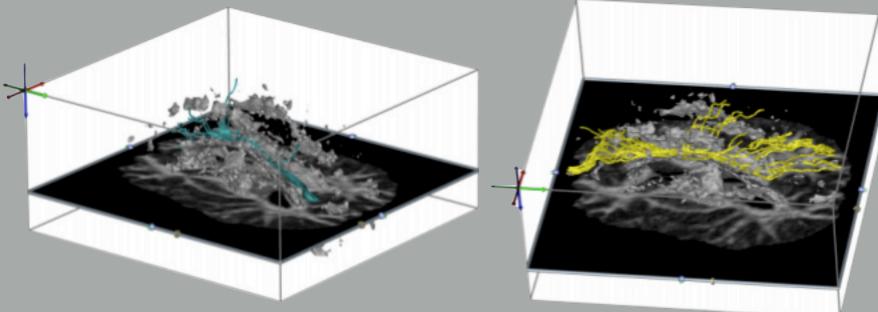
Tensorlines



Weinstein, et. al.

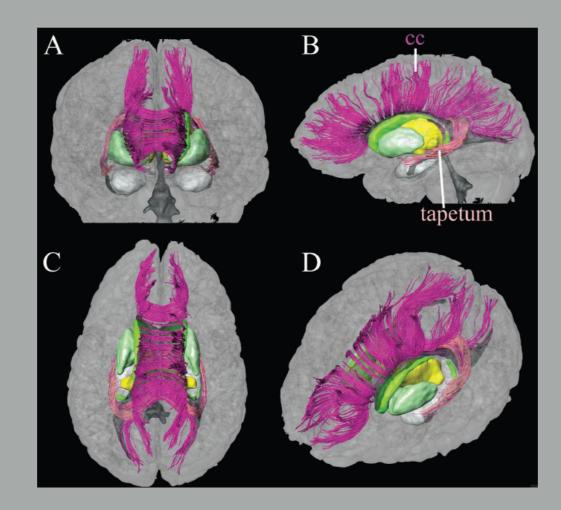
Tensorlines



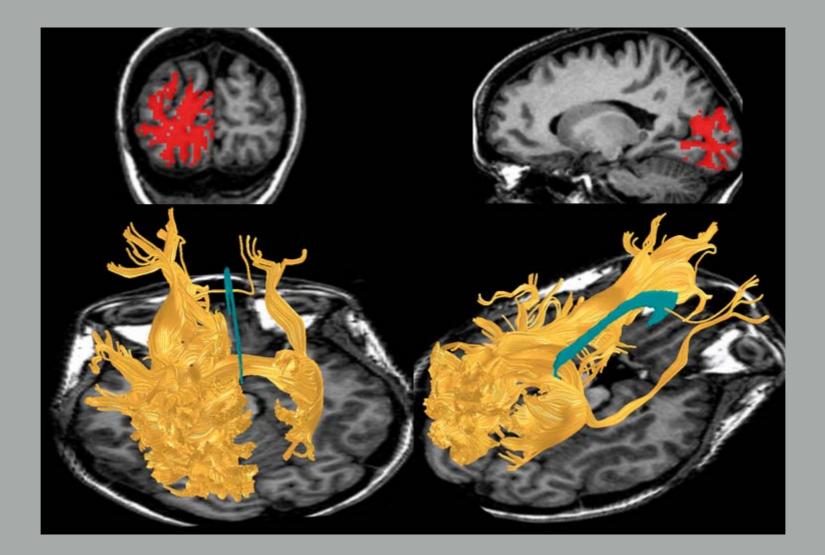


Weinstein, et. al.

Validation



Occipital seeds

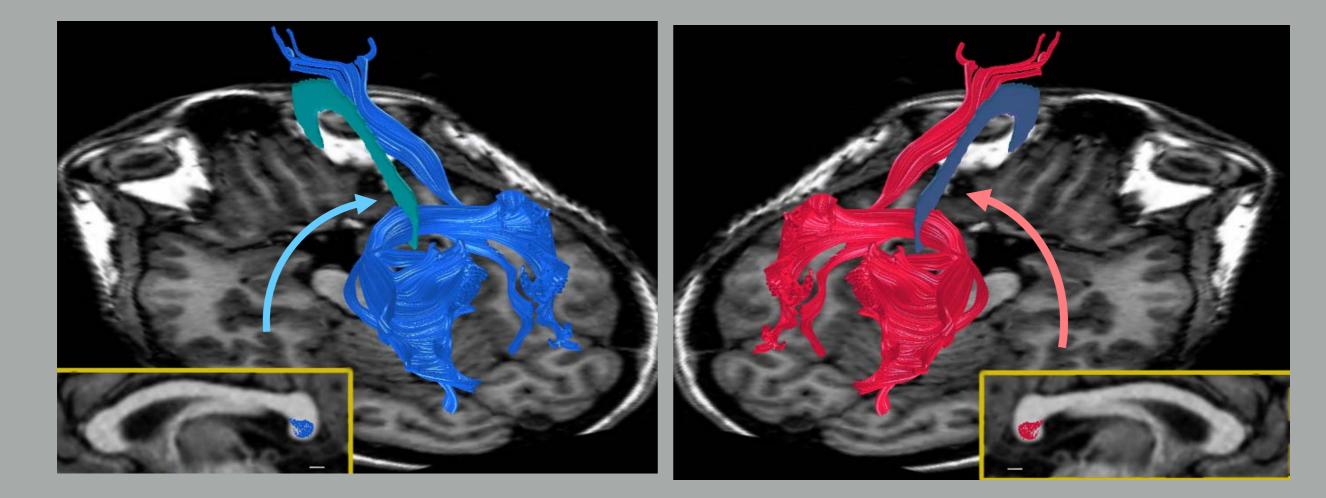


Dougherty PNAS 2005

Tracking through corpus callosum

Left occipital seeds

Right occipital seeds



Dougherty PNAS 2005

- Take into account the uncertainty of fiber orientation
- Allows multiple paths
- Schemes based on
- Regularized stochastic models
- Linear state space models
- Bending energy models
- Monte-Carlo methods

FSL's FDT (Behren's et. al.)

Assume partial volume model for voxels: Some fraction *f* gray matter (isotropic) diffusion and the remaining fraction *(1-f)* is white matter (anisotropic) diffusion

$$\frac{s(b_i)}{s(0)} = f e^{-b_i d} + (1 - f) e^{-b_i \tilde{D}}$$

where $\tilde{\boldsymbol{D}} = \boldsymbol{R} \boldsymbol{D}_{\Lambda} \boldsymbol{R}^t$

$$\frac{s(b_i)}{s(0)} = f e^{-b_i d} + (1 - f) e^{-b_i \tilde{D}}$$

$ilde{m{D}} = m{R}m{D}_{\Lambda}m{R}^t$

$$\boldsymbol{D}_{\Lambda} = \begin{pmatrix} d & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{bmatrix} \text{NOT the diffusion} \\ \text{tensor model!} \end{bmatrix}$$

Only models diffusion along fiber direction

$$\begin{split} \frac{s(b_i)}{s(0)} &= fe^{-b_i d} + (1-f)e^{-b_i \tilde{D}} \\ \tilde{D} &= RD_{\Lambda}R^t \quad \text{assumes same d!} \\ D_{\Lambda} &= \begin{pmatrix} d & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{split}$$

Behrens, et. al.

$$\frac{s(b_i)}{s(0)} = f e^{-b_i d} + (1 - f) e^{-b_i d\tilde{A}}$$

$\tilde{A} = RAR^t$

$$\boldsymbol{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Behrens, et. al.

signal model parameters: $\xi = \{\theta, \phi, d, \sigma, f, s_o\}$

$$P(\boldsymbol{y}|\boldsymbol{\xi}, M) = \prod_{i=1}^{n} P(y_i|\boldsymbol{\xi}, M)$$

$$\boldsymbol{y} = \{y_1, y_2, \dots, y_n\}$$

 $P(y_i|\xi, M) \sim N(\mu_i, \sigma)$

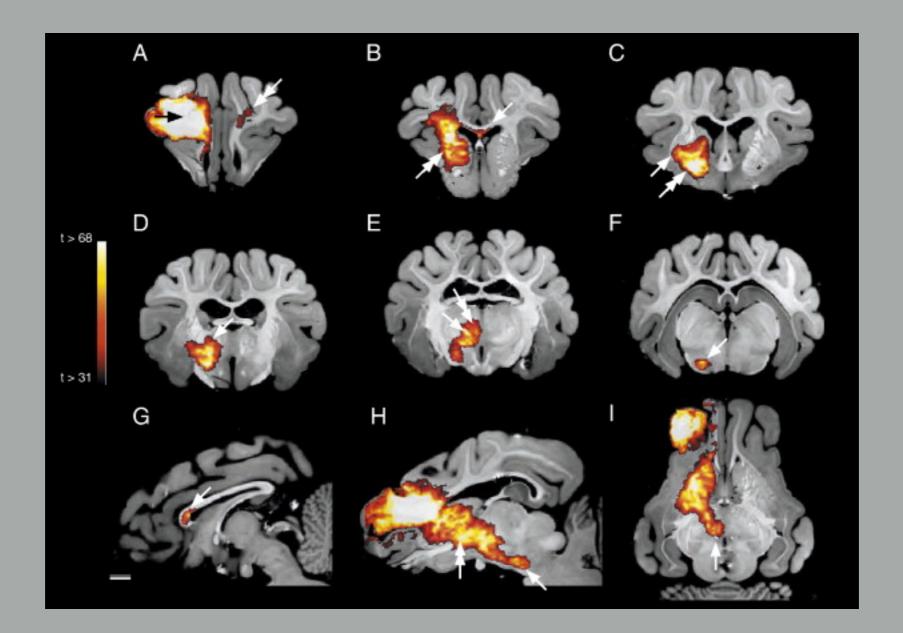
Behrens, et. al.

Bayes' Theorem

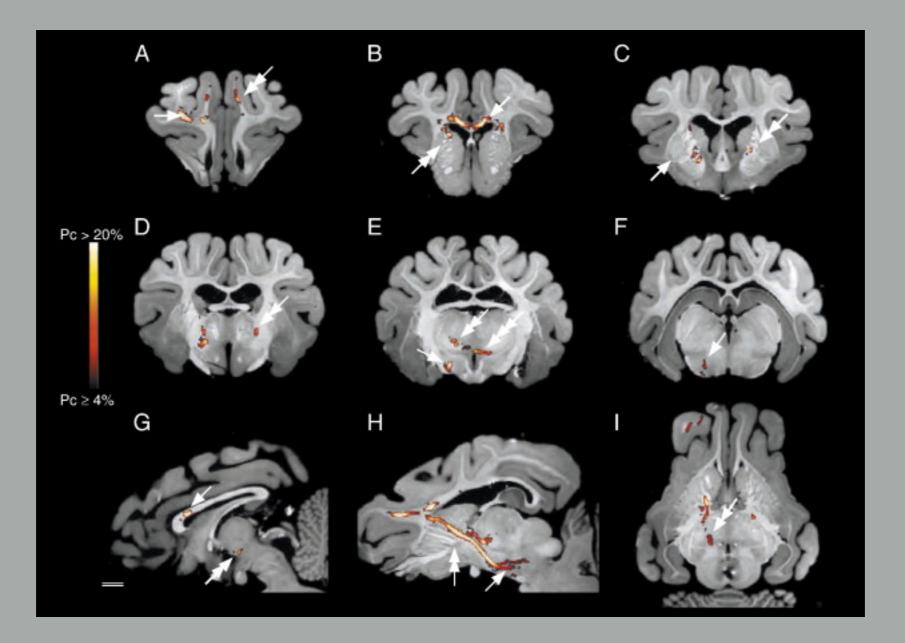
$$P(\xi|\boldsymbol{y}, M) = \frac{P(\boldsymbol{y}|\xi, M)P(\xi|M)}{\int_{\xi} P(\boldsymbol{y}|\xi, M)P(\xi|M)d\xi}$$

 $P(\xi|\boldsymbol{y}, M) = \text{joint distribution of the parameters } \xi$ $P(\xi|M) = \text{prior distribution of the parameters } \xi$

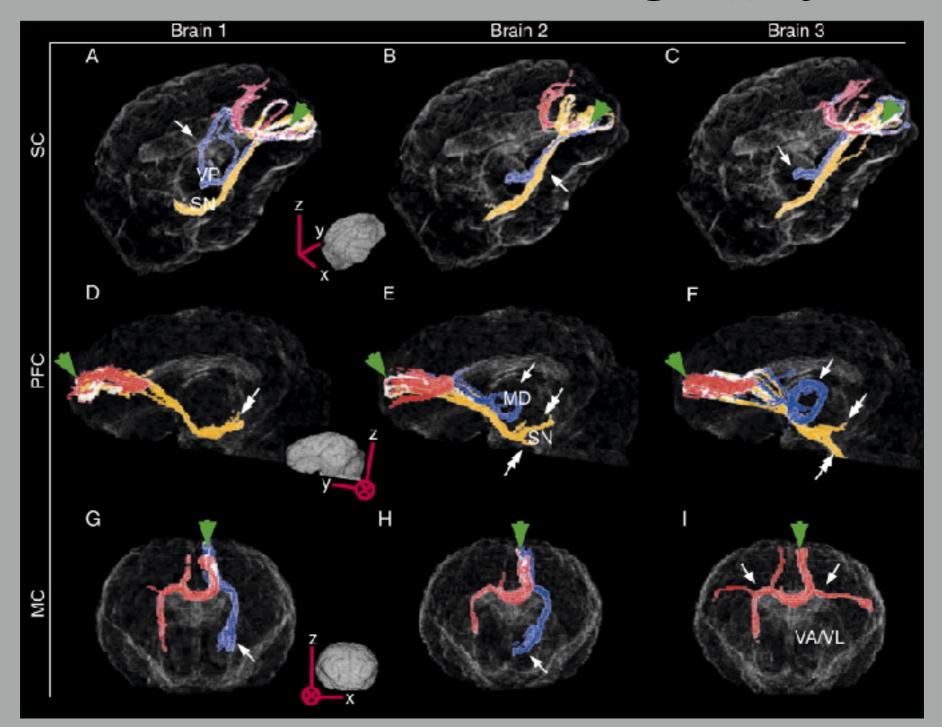
Seek maximum posterior probability of parameters



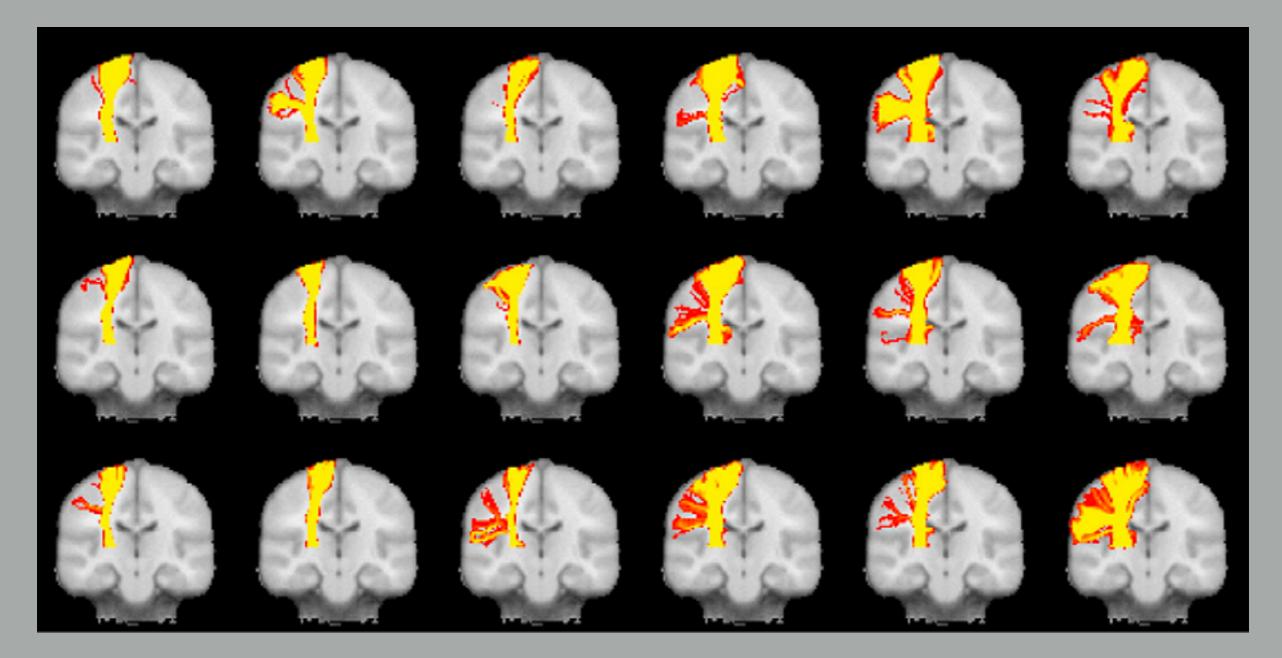
Generation of connected regions Dyrby, NeuroImage 37 (4) 2007



Seeding with constrains on path Dyrby, NeuroImage 37 (4) 2007



Reproducibility Dyrby, NeuroImage 37 (4) 2007



Multifiber

Behrens, NeuroImage 37 (4) 2007

Advantages

 Can represent uncertainty in fiber direction so can go in many directions
Robust to noise. Tracks along "noisy" paths tend to be of low probability and so disperse.

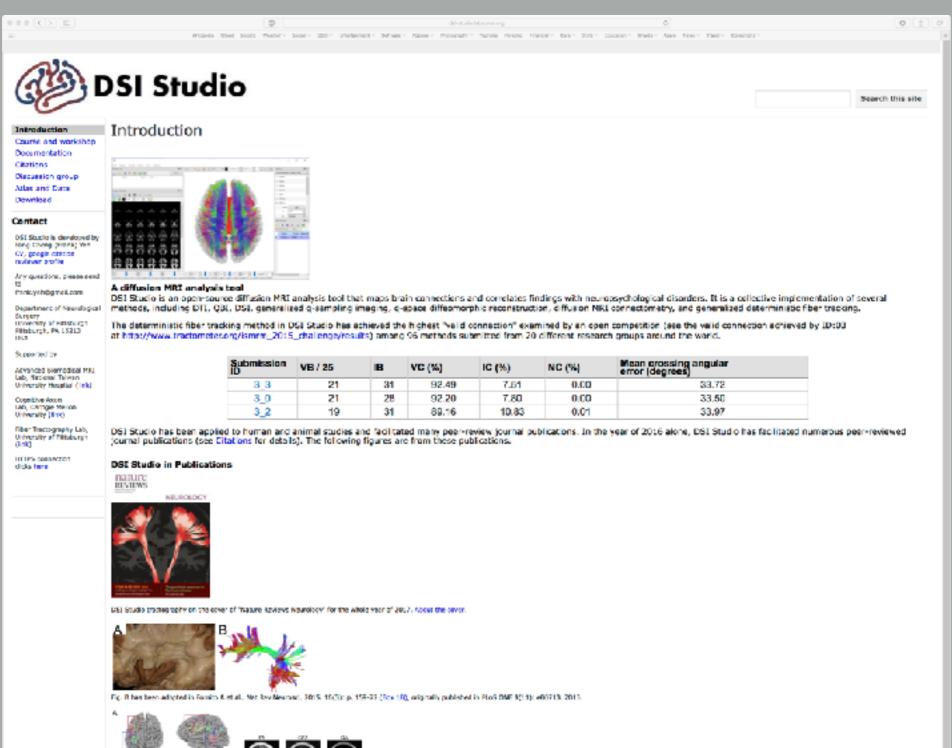
These have the effect of reducing the importance of curvature and anisotropy stopping criteria

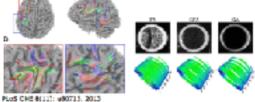
Interpretation:

Connectivity PDF is *not* distribution of connections from a seed point.

It is confidence bounds on location of most probable single connection

DSI Studio



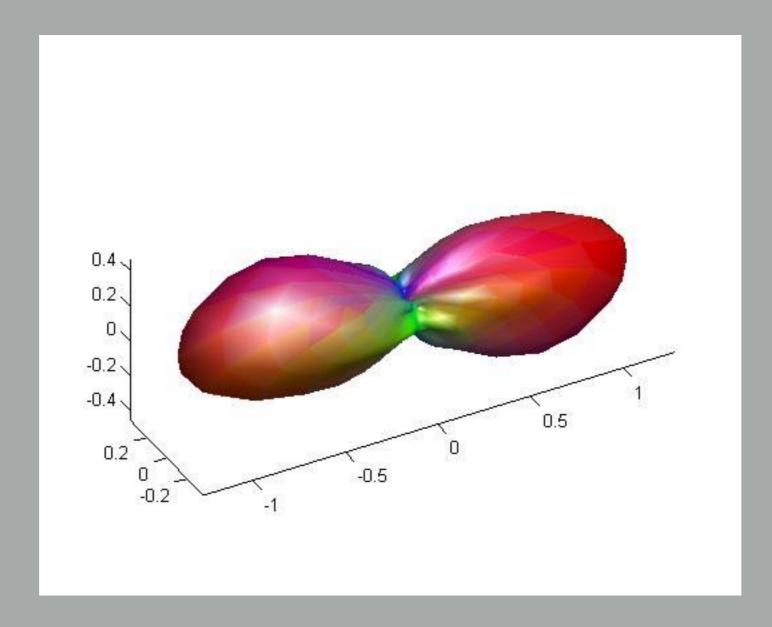


Open source, open file format

DSI Sculic is open source. The file format used in DSI Studio can be loaded/save from MATLAB, giving users the greatest flexibility to process the data. DSI Studio supports DICOM file format, Bruker 2dseq, and 4D NIFTI. It was designed to work with other popular tools such as FSL, TrackVis.

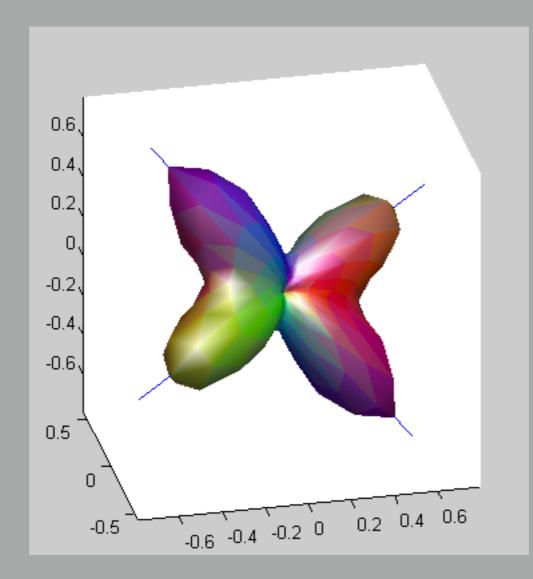
Track density imaging

3D presentation of the ODFs in Matlab

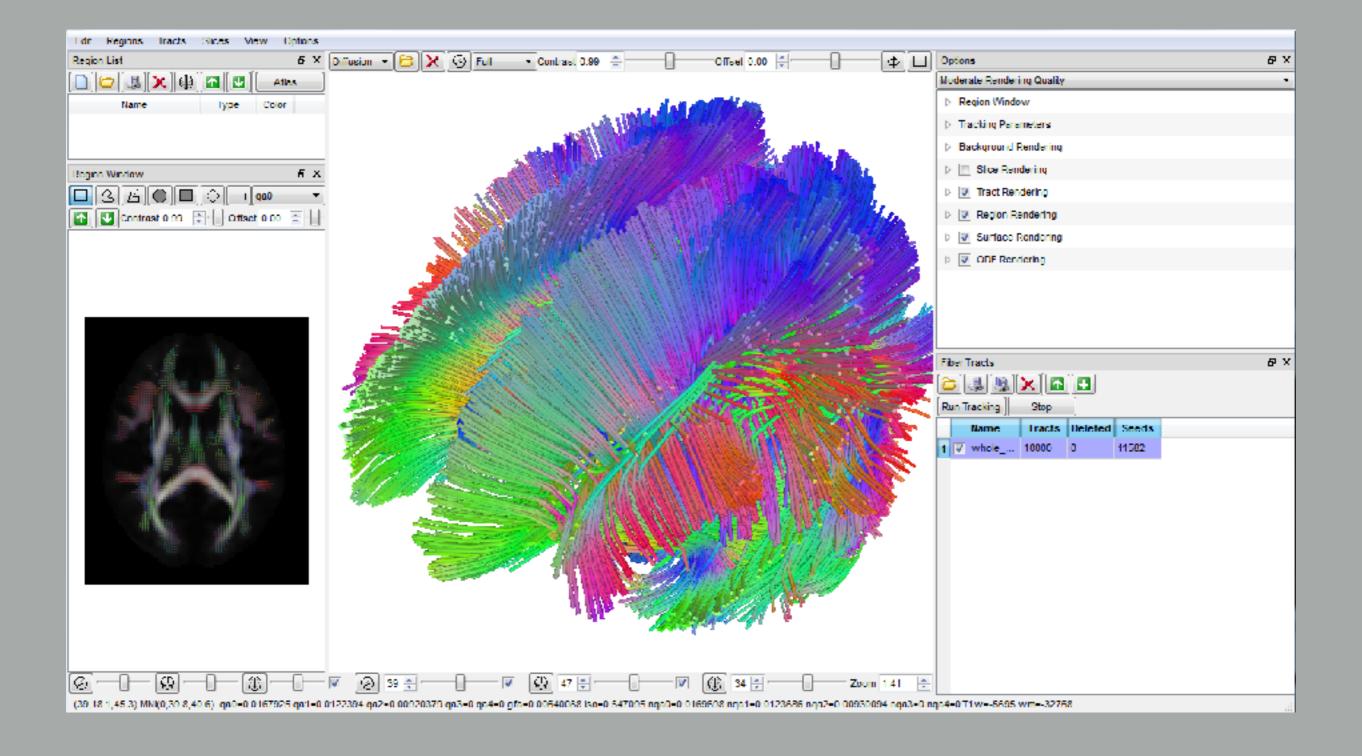


Track density imaging

3D presentation of the ODFs in Matlab



DSI Studio



Track density imaging

The challenge

¥	nature communications					
		Altmetric: 212	Citations: 1			More detail »
Article	OPEN					

The challenge of mapping the human connectome based on diffusion tractography

Klaus H. Maier-Hein 🏁, Peter F. Neher, 🛛 [...] Maxime Descoteaux 🏁

Nature Communications **8**, Article number: 1349 (2017) doi:10.1038/s41467-017-01285-x Download Citation

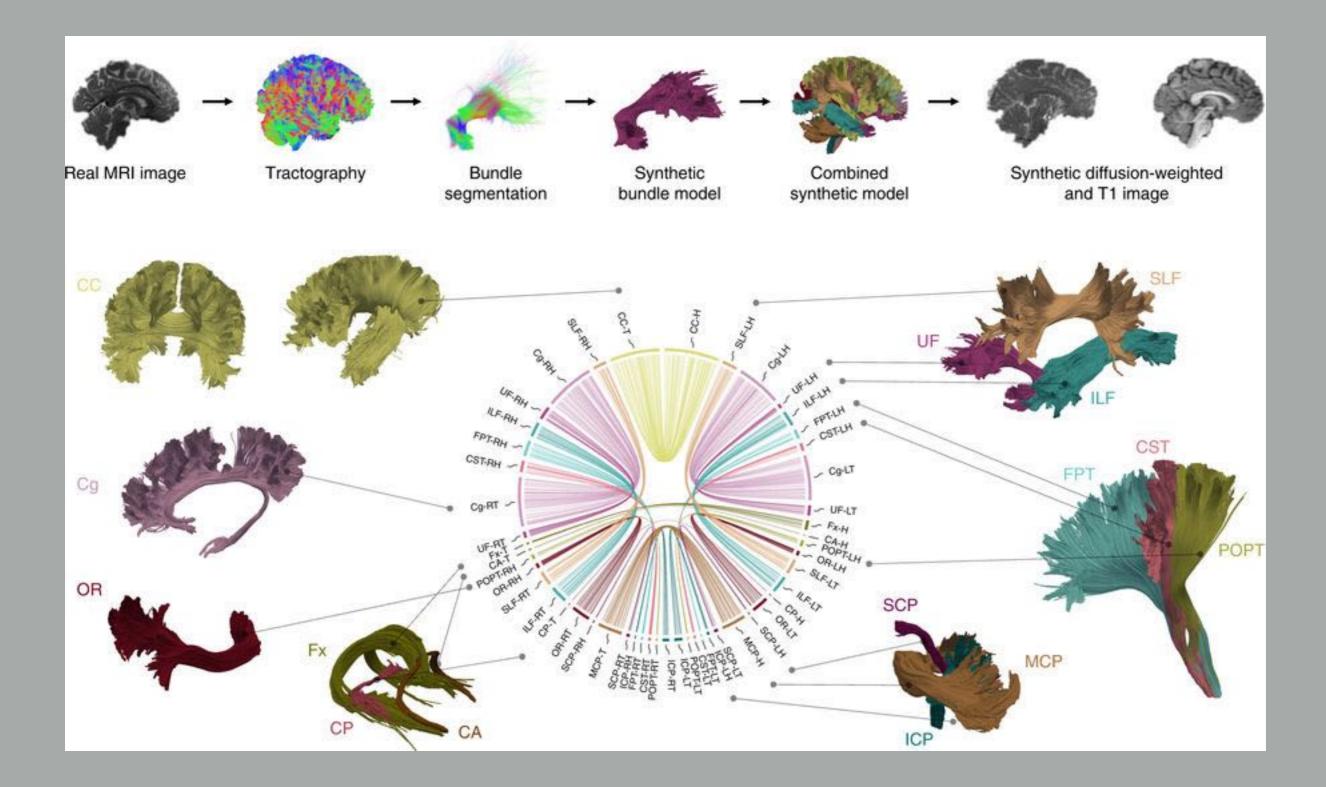
Computational biology and bioinformatics

Medical research Nervous system

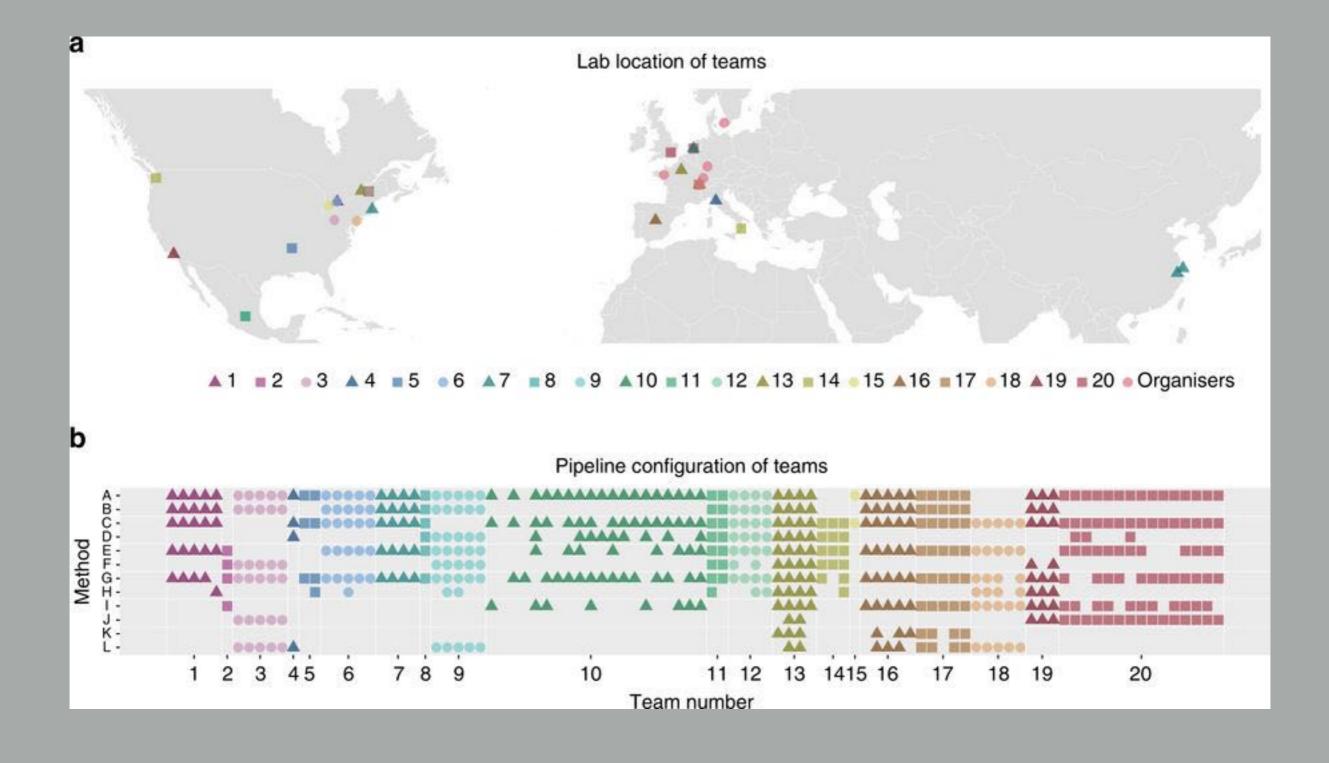
Neuroscience

Received: 21 November 2016 Accepted: 01 September 2017 Published online: 07 November 2017

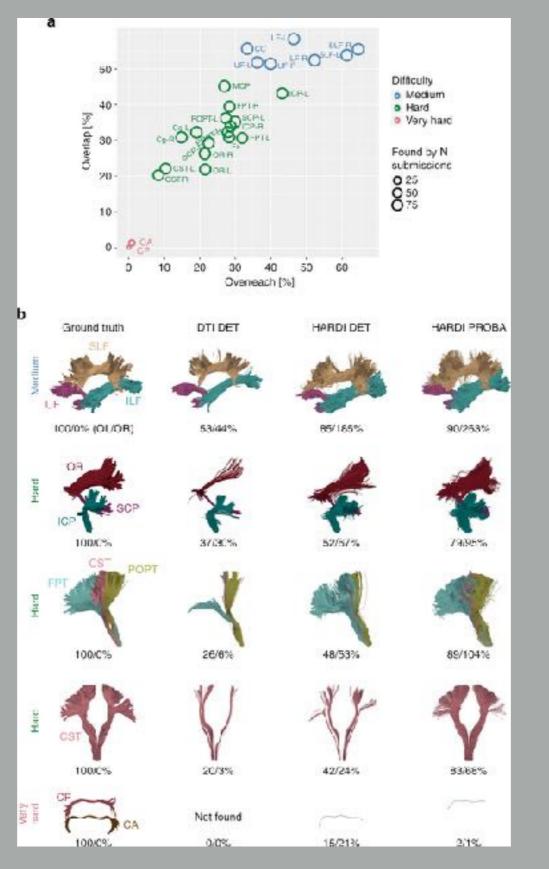
Overview of synthetic data set



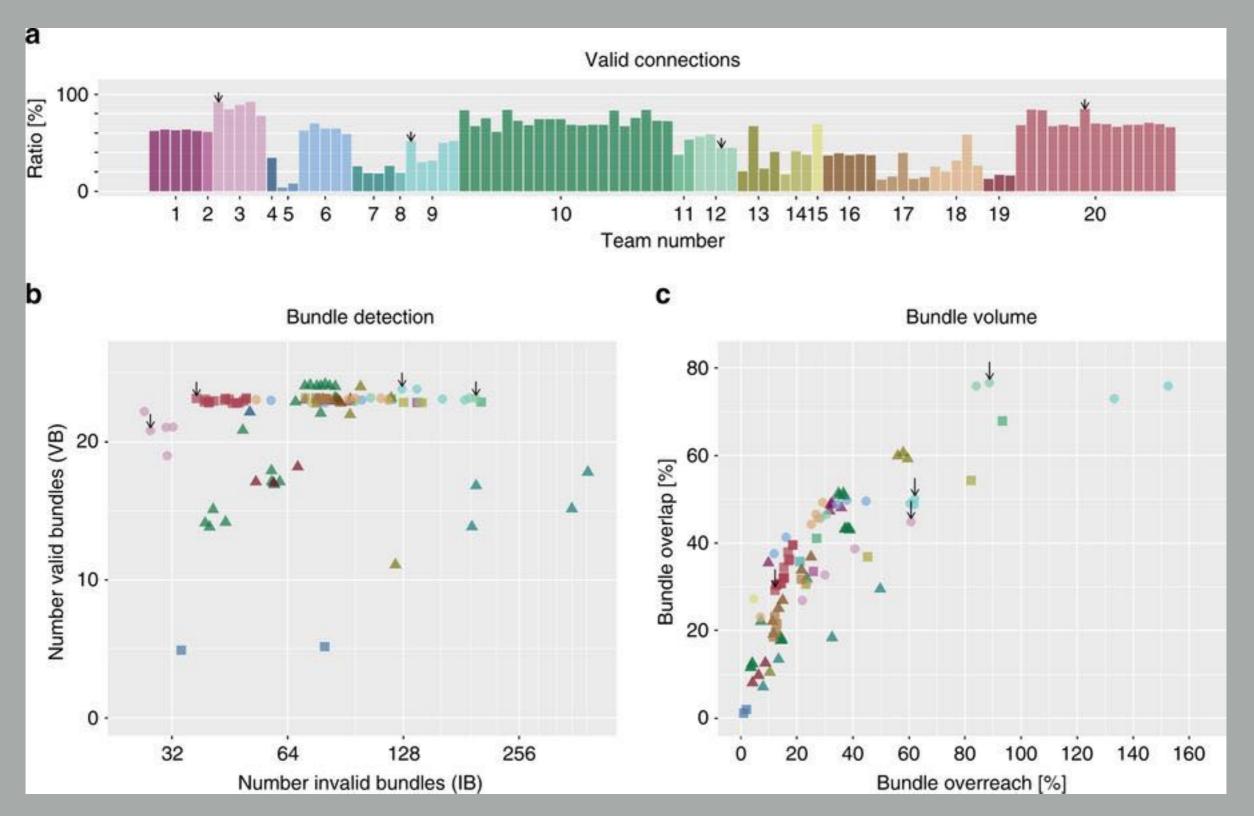
Summary of teams and tractography pipeline setups



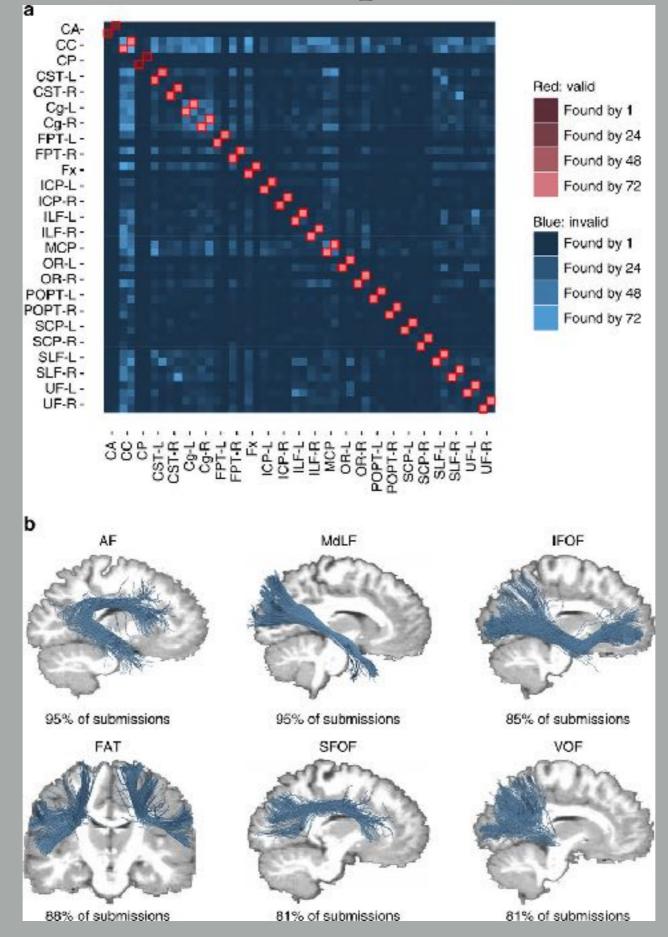
Tractography identifies most of the ground truth bundles, but not their full extent



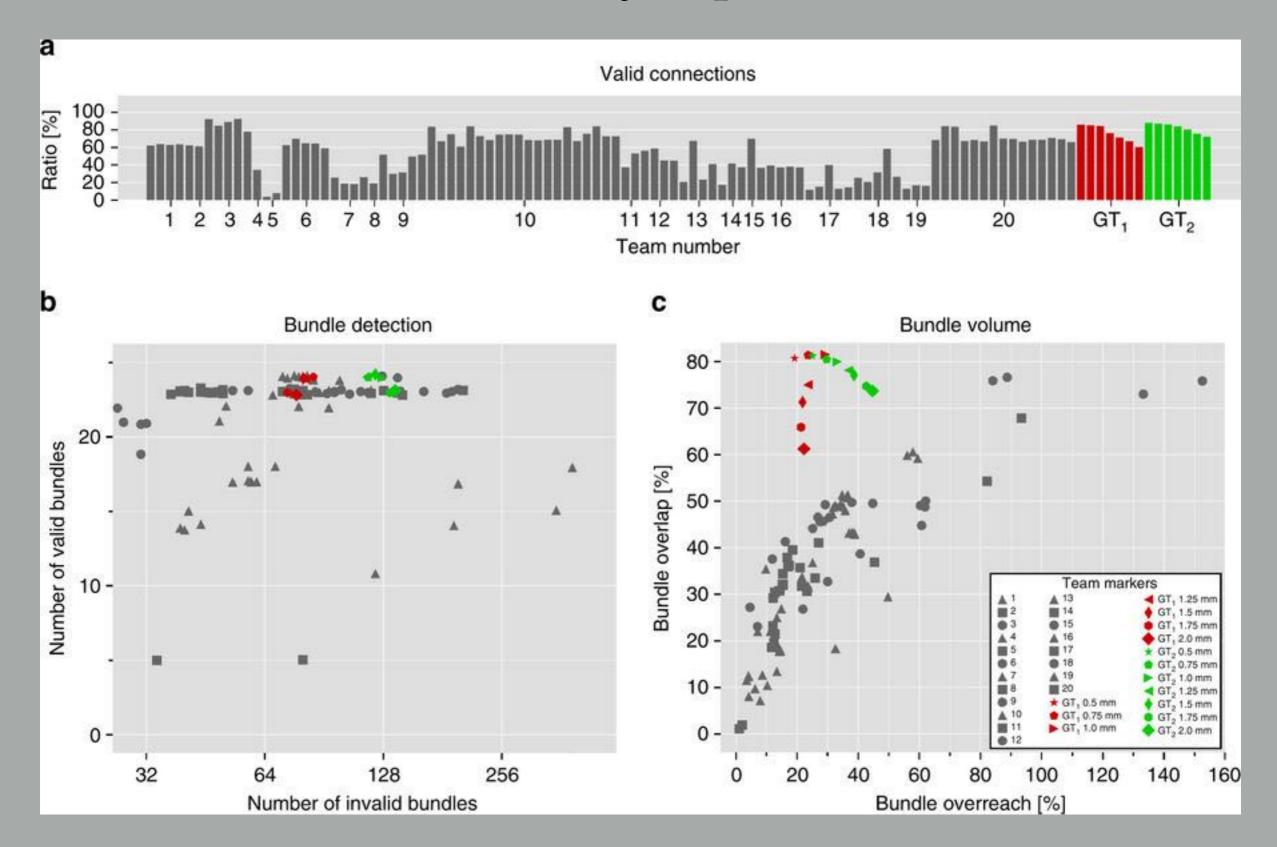
Between-group differences in tractography reconstructions of VBs and IBs



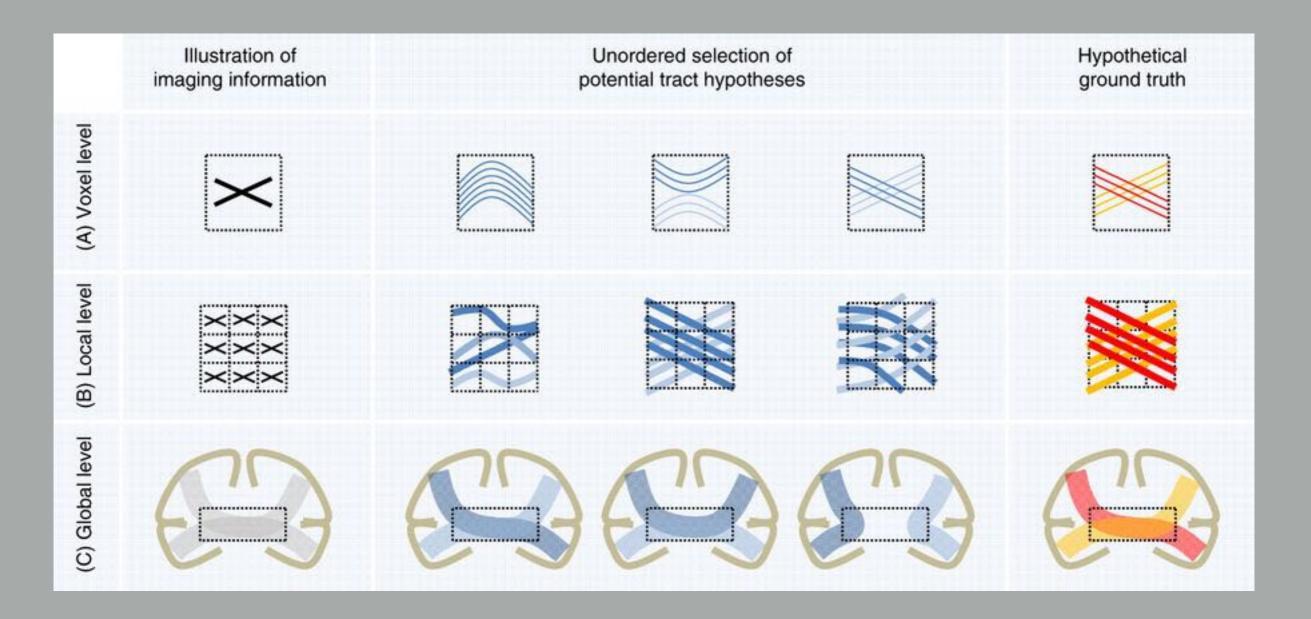
Overview of VBs and IBs and examples of invalid streamline clusters



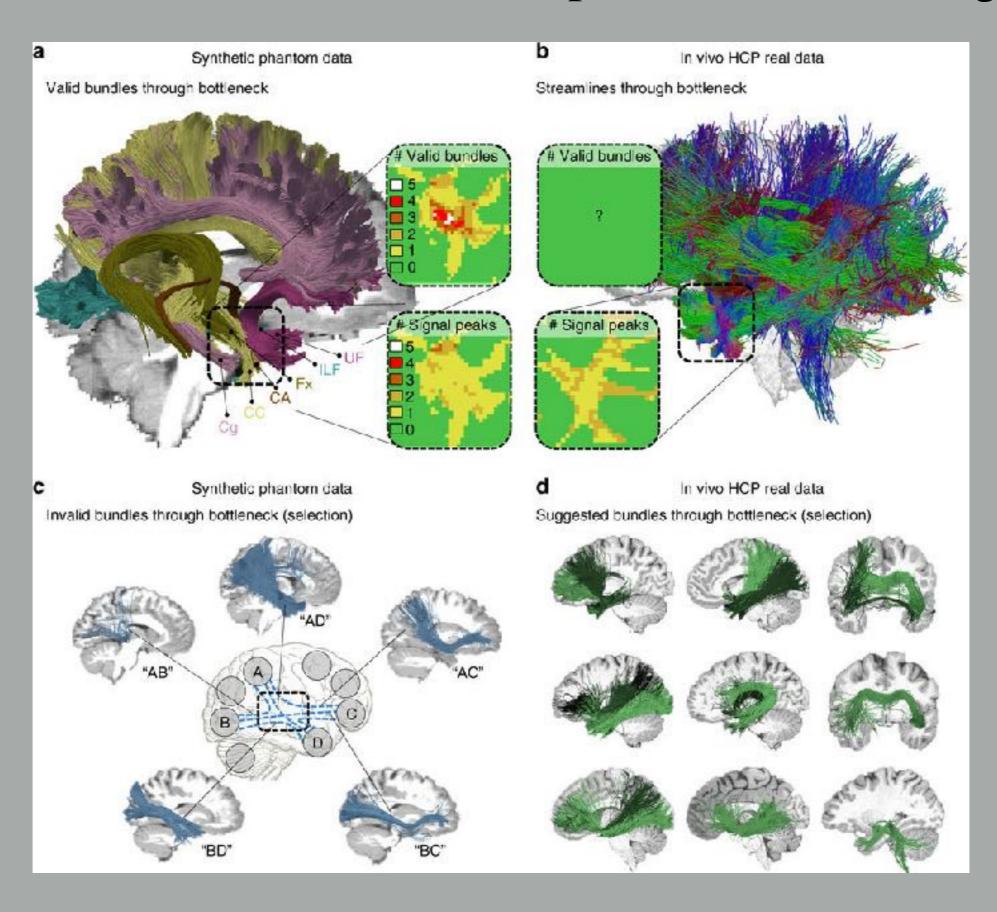
Tractography on ground truth directions with no noise still affected by IB problem



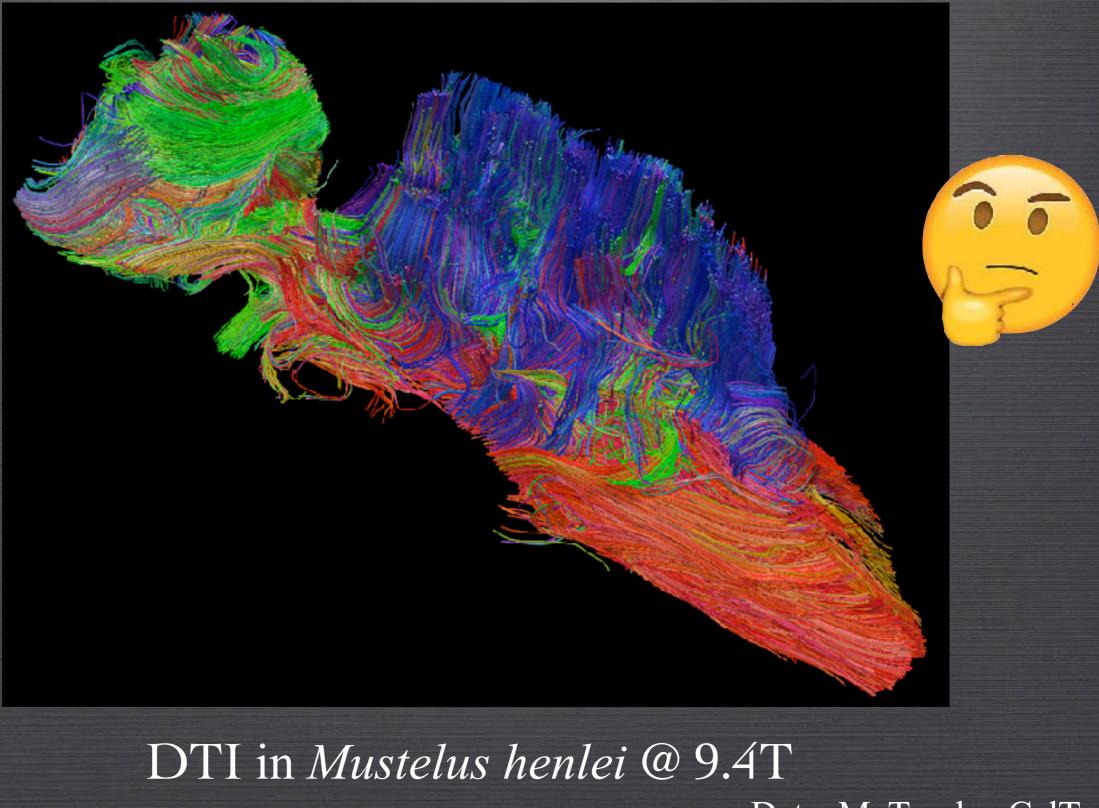
Ambiguous correspondences between diffusion directions and fiber geometry



Bottlenecks and the fundamental ill-posed nature of tractography



Is this correct??



Data: M. Tyszka, CalTech