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In this work the double Pulsed Gradient Spin Echo
(d-PGSE) experiment [7–9] is used to detect or discover
whether gray matter exhibits microscopic diffusion anisot-
ropy. The d-PGSE sequence (Fig. 2) and its two-dimen-
sional variants [10] are already well-established
techniques in non-medical applications to characterize
local anisotropy of macroscopically isotropic materials,
such as liquid crystals [7,11] prolate yeast cells [8] and
plants [12].

The d-PGSE sequence consists of two single-PGSE
blocks, which are concatenated. The resulting spins from
the first PGSE block become the population of spins inter-
rogated by the second PGSE block. Because the resulting

echoes depend on the spin evolution in both encoding peri-
ods, these contain information about the spins’ diffusion
histories during both PGSE blocks.

To assess the presence of microscopic diffusion anisot-
ropy, one compares two d-PGSE experiments in which dif-
fusion sensitizing gradients are applied in the same and in
orthogonal directions. For microscopically isotropic mate-
rials, regardless of the diffusion gradient encoding direc-
tions, the resulting echo attenuations all superimpose.
However, in the case of materials that exhibit local anisot-
ropy, the resulting curves observed from the collinear and
orthogonal diffusion gradient encoding directions do not
superimpose. Consequently, a difference between these
curves indicates microscopic anisotropy.

To explore the origin of gray matter anisotropy, we also
constructed a ‘‘gray matter’’ phantom that is macroscopi-
cally isotropic and microscopically anisotropic. The phan-
tom is designed to be stable, so it can also be used as a
diffusion standard for calibrating the d-PGSE sequences
and NMR hardware. Furthermore, the phantom has a sim-
ple geometry so that the displacement history of spins can
be mathematically modeled.

2. Materials and methods

2.1. Experimental design

The double-PGSE sequence was applied in nine different
combinations of gradient directions between the two pairs
of gradient pulses (PGSE blocks). Three collinear
directions: X_X, Y_Y and Z_Z; and six orthogonal
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Fig. 2. Double-PGSE pulse sequence. G1 and G2 can be either in the same
direction (i.e., collinear) or in orthogonal directions. The mixing time, sm,
is the time between the two d-PGSE blocks.
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Fig. 1. (a,d) Illustration of gray and white matter tissue with respect to a macroscopic pixel. Note. MRI pixel length scale is significantly larger than that
illustrated. (b,e) The distributions of diffusion directors of the gray and white matter fibers within each pixel. (c,f) The resulting displacement profile
averaged over the pixel.
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What’s the problem?



But we know Neural Tissues 
aren’t that simple

Rat WM electron microscopic image 
Courtesy, M. Ellisman, UCSD



Failure of the standard model

A simple partial-volume model

Two crossing fibers resulting distributions
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Ambiguities in the standard model
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Failure of the standard model

Distribution of spins Estimated D



Ambiguities in the Standard DTI Model

�

FA



Variance of Measurements

�

Frank, et. al. MRM 2001



High Angular Resolution DTI (HARDI)

b = 0, 500, 1000, 1500

Structure of lobes relative to fiber orientation is “non-intuitive”!
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Two fiber model

S = fe�bD(�) + (1� f)e�bD(�+d�)

D(�) = di�usion profile for single fiber
as a function of angle � in the plane

d� = angle between fibers

f = volume fraction



High Angular Resolution DTI (HARDI)

signal
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Structure of lobes relative to fiber orientation is “non-intuitive”!
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Failure of the standard model

Not only angular issues, but b-value dependencies as well!
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simple two diffusion coefficient model



Ambiguities in the Standard DTI Model
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Mono-exponential

�
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SNR=50

b = 100, {D1, D2} = {.01, .002}
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But bi-exponential decay 
can look mono-exponential
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p(D1, D2|s, b)

SNR=50
b = 100, {D1, D2} = {.01, .002} f = .5

Posterior probability of bi-exponential decay



Bi-exponential decay
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Posterior probability of bi-exponential decay

�

SNR=50

b = 1000, {D1, D2} = {.01, .002}

p(D1, D2|s, b)

f = .5



Diffusion data in normal human brain

�

Corpus Callosum Corona Radiata



The Diffusion Signal

Signal and Distribution are 
Fourier Transform pairs

s(q, �) =
�

P (r̄, �)e�iq·r̄dr̄

P (r̄, �) =
�

s(q, �)eiq·r̄dq

s(q, �) � s(q, �)
s(0)



Representations of waves

Which coordinate system is most appropriate?

What is the symmetry of the problem?



Representations of waves

Cartesian symmetry

Fourier basis functions

Radial symmetry

Which basis functions?



A familiar harmonic decomposition

Constant

Fundamental: A1 cos (ωf t)

1st harmonic: A2 cos (2ωf t)



Representation of spherical functions



The Diffusion Signal

One could sample all of q-space,
but for efficiency, we sample a shell,

so we have data on a spherical surface

P (r̄, �) =
�

s(q, �)eiq·r̄dq

Not enough q data to do this integral!



Spherical Coordinates

x

y

z



Representations of planar functions

Fourier decomposition:

f(�, t) =
�

j

aje
�i�jt



Representations of spherical functions

alm = spherical harmonic coe�cients

f(�,⇥) =
⇥�

l=0

l�

m=�l

almYlm(�,⇥)

Ylm(�,⇥) = spherical harmonics



Spherical Harmonics

M!"2 M!"1 M!0 M!1 M!2

L!2

L!1

L!0

color represents phase



Harmonic Decomposition

= +

Single Fiber

L=0 L=2



Orthonormal Functions

The spherical harmonics are orthonormal 
They are orthogonal (perpendicular) and normalized

�
d� Y �

lm(�)Yl�m�(�) = �ll��mm�

� =( �,⇥)



Orthonormal Functions

This allows us to easily calculate the coefficients, 
given 

alm =
�

d� f(�)Y �
lm(�)



Representation of Shapes

Cortical surface description in terms of
spherical harmonics of maximum degree 

lmax = 5 lmax = 25 lmax = 75

lmax



Representations of spherical functions

P (�, ⇥) =
⇥�

l=0

l�

m=�l

plmYlm(�, ⇥)

S(�,⇥) =
⇥�

l=0

l�

m=�l

slmYlm(�,⇥)

the signal

the angular distribution of fibers



Representations of spherical functions

slm =
� 2�

0

� �

0
Y �

lm(�,⇥)S(�,⇥) sin � d� d⇥

plm =
� 2�

0

� �

0
Y �

lm(�,⇥)P (�,⇥) sin � d� d⇥

the signal coefficients

the PDF coefficients



Orientation Distribution Function (ODF)

Funk-Radon Transform

Tuch, et. al. MRM 2001

ODFq(�,⇥) =
�

C�,⇥

S(�,⇥) sin � d�d⇥



Orientation Distribution Function (ODF)

Funk-Radon Transform

Tuch, et. al.



Orientation Distribution Function (ODF)

ODFq(�,⇥) =
⇥�

l=0

l�

m=�l

olmYlm(�,⇥)

Anderson, et. al. MRM 2001



Orientation Distribution Function (ODF)

where

�(l) = (�1)l/2 (l + 1)!!
(l + 1)l!!

olm =
2⇤|q|
so

⇥(l)slm�l

�l =

�
1 even l

0 odd l

SHD of signal

Anderson, et. al. MRM 2001

l!! =

(
l · (l � 2) · (l � 4) · . . . 4 · 2) l even

l · (l � 2) · (l � 4) · . . . 3 · 1) l odd



Signal SHD

�

signal SHD of signal ODF



Signal SHD

�

signalSHD of signal ODF

b=1500 mm2/s

b=1500 mm2/s



Signal SHD

�

b=1500 mm2/s

b=3000 mm2/s

signalSHD of signal ODF



Signal SHD

�

signal fiber modelODF



ODF in normal human

�

anisotropic components of ODF



Diffusion Anisotropy in standard DTI model

Fractional Anisotropy

FA =

�
3
2

(�⇥)2

⇥2



Spherical Harmonics

Non-physical

Anisotropic

Isotropic

L = 2

L = 1

L = 0

m = 2m = �2 m = �1 m = 1m = 0



Laplace Series

f(�,⇤) =
⇥�

l=0

�l�

m=�l

almYlm(�,⇤)

= a00Y00(�,⇤) +
⇥�

l=2

�l�

m=�l

almYlm(�, ⇤)

=
a00�
4⇥

⌅ ⇤⇥ ⇧
isotropic

+
⇥�

l=2

�l�

m=�l

almYlm(�,⇤)

⌅ ⇤⇥ ⇧
anisotropic

l even



Generalized Diffusion Anisotropy

f(�,⇤)� a00⇥
4⇥

=
⇥�

l=2

�l�

m=�l

almYlm(�, ⇤)

anisotropic component 

l even



High Angular Resolution Sampling



High Angular Resolution DTI (HARDI)

principal eigenvector 2nd order diffusion tensor

ODF anisotropic components of ODF



HARDI Simulation

�

Descataux, et. al. MRM 2005



High Angular Resolution DTI (HARDI)



P (�, ⇥) =
⇥�

l=0

l�

m=�l

plmYlm(�, ⇥)

S(�,⇥) =
⇥�

l=0

l�

m=�l

slmYlm(�,⇥)

the signal

the angular distribution of fibers

The FORECAST Model

Fiber orientation by SHD of signal spherical harmonic
representation of fiber orientation function but with

the assumption of cylindrical symmetry

Anderson, MRM 54:1194 (2005)



The FORECAST Model

Assumption of cylindrical symmetry

D =

�

⇤
�� 0 0
0 �� 0
0 0 �⇥

⇥

⌅

Anderson, MRM 54:1194 (2005)



The FORECAST Model

signal

Anderson, MRM 54:1194 (2005)

orientation and 
volume fraction (2/3 & 1/3)



The FORECAST Model

Anderson, MRM 54:1194 (2005)

L 0 2 4 6 8

Angular point spread function
Higher order gives higher resolution but is more 
sensitive to noise as the coefficients are smaller



The FORECAST Model

Anderson, MRM 54:1194 (2005)

signal

fiber angular distribution
via FORECAST

FORECAST ODF

q-Ball ODF

SHD of Dapp

standard DTI



The CHARMED Model

Hindered

Restricted

Assaf, et. al. MRM 52:965 (2004)



The CHARMED Model

E(q, �) = fhEh(q, �) +
n�

j=1

f j
r Ej

r(q, �)

Signal decay

hindered volume fraction

Hindered decay Restricted decay

restricted volume fraction

Assaf, et. al. MRM 52:965 (2004)



The CHARMED Model

Assume cylindrical symmetry

D =

�

⇤
�� 0 0
0 �� 0
0 0 �⇥

⇥

⌅

Assaf, et. al. MRM 52:965 (2004)



The CHARMED Model

Assume cylindrical symmetry Assaf, et. al. MRM 52:965 (2004)

hindered

restricted



The CHARMED Model

Decoupling of D⇥ and D� in restricted compartment

ER(q,�) =
�

P (r,�)eiq·rdr

ER(q,�) = E�(q�,�)E⇥(q⇥,�)

PR(r,�) = P�(r�,�)P⇥(r⇥,�)

Assaf, et. al. MRM 52:965 (2004)



The CHARMED Model

E⇤(q⇤,�) = e�4�2|q�|2⇥D�

⇥ = �� �/3

E�(q�,�) = ef(D�) = restricted di⇥usion in a cylinder (Neuman)

messy!

Form of E⇥ and E� in restricted compartment

Assaf, et. al. MRM 52:965 (2004)



The CHARMED Model

Form of Eh in hindered compartment

Eh(q,�) = e�4�2⇥qtDq

q = q⇥ + q�

Eh(q,�) = e�4⇥2⇤(|q⇥|2�⇥+|q�|2��)

Assaf, et. al. MRM 52:965 (2004)



The CHARMED Model

3D-FFT of simulated signal

Assaf, et. al. MRM 52:965 (2004)



The CHARMED Model

3D-FFT of simulated signal

Assaf, et. al. MRM 52:965 (2004)



The CHARMED Model

3D-FFT of simulated signal

Assaf, et. al. MRM 52:965 (2004)



The CHARMED Model

pig spinal cord phantom

Assaf, et. al. MRM 52:965 (2004)



The CHARMED Model

one hindered
(i.e., standard DTI)

one hindered
one and two restricted

Assaf, et. al. MRM 52:965 (2004)



The CHARMED Model

Assaf and Basser, Neuroimage 27:48 (2005)

Three configurations

1. One hindered and  no restricted (n=0)
2. One hindered and one restricted (n=1)
3. One hindered and two restricted (n=2)



The CHARMED Model

Assaf and Basser, Neuroimage 27:48 (2005)

10 shells of b-values from 0-10,000 s/mm^2,
from 6 directions (inner shell) to 30 directions (outer shell)



The CHARMED Model

Assaf and Basser, Neuroimage 27:48 (2005)

Hindered component Restricted component



The CHARMED Model

Assaf and Basser, Neuroimage 27:48 (2005)

Corpus callosum Cingulum A+B

Directionality Map



The CHARMED Model

Assaf and Basser, Neuroimage 27:48 (2005)

Corpus callosum Cingulum A+B

Hindered

Restricted



The CHARMED Model

Assaf and Basser, Neuroimage 27:48 (2005)

HinderedRestricted

Mean diffusivity FA



Heterogeneous Voxels 
and High Angular Resolution Sampling

a voxel with crossing fiber 
bundles and random 

spherical cells...

signal from 162 directions



Quasi-realistic HARDI simulation

...the orientation distribution 
function

a voxel with crossing fiber 
bundles and random 

spherical cells...

Balls and Frank, Magn. Reson. Med. 62:(2009)



The interplay of Parameters

The ability to descriminate voxel content 
depends on the diffusion sampling scheme

And there are multiple fibers, relative 
orientations, volume fractions, etc!



High Angular Resolution DTI (HARDI)

162 directions

signal ODF



High Angular Resolution DTI (HARDI)

2562 directions

signal ODF



End



Next Lecture

A General Approach to DTI



Fundamental Limitation of DTI
Heterogeneous Voxels

In this work the double Pulsed Gradient Spin Echo
(d-PGSE) experiment [7–9] is used to detect or discover
whether gray matter exhibits microscopic diffusion anisot-
ropy. The d-PGSE sequence (Fig. 2) and its two-dimen-
sional variants [10] are already well-established
techniques in non-medical applications to characterize
local anisotropy of macroscopically isotropic materials,
such as liquid crystals [7,11] prolate yeast cells [8] and
plants [12].

The d-PGSE sequence consists of two single-PGSE
blocks, which are concatenated. The resulting spins from
the first PGSE block become the population of spins inter-
rogated by the second PGSE block. Because the resulting

echoes depend on the spin evolution in both encoding peri-
ods, these contain information about the spins’ diffusion
histories during both PGSE blocks.

To assess the presence of microscopic diffusion anisot-
ropy, one compares two d-PGSE experiments in which dif-
fusion sensitizing gradients are applied in the same and in
orthogonal directions. For microscopically isotropic mate-
rials, regardless of the diffusion gradient encoding direc-
tions, the resulting echo attenuations all superimpose.
However, in the case of materials that exhibit local anisot-
ropy, the resulting curves observed from the collinear and
orthogonal diffusion gradient encoding directions do not
superimpose. Consequently, a difference between these
curves indicates microscopic anisotropy.

To explore the origin of gray matter anisotropy, we also
constructed a ‘‘gray matter’’ phantom that is macroscopi-
cally isotropic and microscopically anisotropic. The phan-
tom is designed to be stable, so it can also be used as a
diffusion standard for calibrating the d-PGSE sequences
and NMR hardware. Furthermore, the phantom has a sim-
ple geometry so that the displacement history of spins can
be mathematically modeled.

2. Materials and methods

2.1. Experimental design

The double-PGSE sequence was applied in nine different
combinations of gradient directions between the two pairs
of gradient pulses (PGSE blocks). Three collinear
directions: X_X, Y_Y and Z_Z; and six orthogonal

90x 180y 180y

first echo
detected

echo

rf

PGSE block

G1 G2 G2G1

∆ ∆

δ
gradient

τm

1st echo time

2nd echo time

Fig. 2. Double-PGSE pulse sequence. G1 and G2 can be either in the same
direction (i.e., collinear) or in orthogonal directions. The mixing time, sm,
is the time between the two d-PGSE blocks.
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Fig. 1. (a,d) Illustration of gray and white matter tissue with respect to a macroscopic pixel. Note. MRI pixel length scale is significantly larger than that
illustrated. (b,e) The distributions of diffusion directors of the gray and white matter fibers within each pixel. (c,f) The resulting displacement profile
averaged over the pixel.
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What if HARDI doesn’t show anisotropy?

1. Özarslan, J. Magn. Reson. 199 (2009)
2. Özarslan and Basser, J. Chem. Phys. 128 (2008)

(a). Microscopic

Of the examples shown, only (c) would appear to 
have anisotropy using standard DTI techniques.

Anisotropy on the microscopic scale requires “multiple scattering”1,2 

(b). Compartment Scale (c). Ensemble


