Lecture 14

Multi-fiber voxels

Lecture Summary

Failure of the standard DTI model
Higher order tensor modesl

Partial voluming

1 mm

3 mm

Partial voluming

1 mm

3 mm

WHAT'S THE PROBLEM?

BUT WE KNOW NEURAL TISSUES AREN'T THAT SIMPLE

Rat WM electron microscopic image Courtesy, M. Ellisman, UCSD

FAILURE OF THE STANDARD MODEL

A simple partial-volume model

Two crossing fibers

resulting distributions

FAILURE OF THE STANDARD MODEL

Ambiguities in the Standard DTI Model

Variance of Measurements

Frank, et. al. MRM 2001

HIGH ANGULAR RESOLUTION DTI (HARDI) b = 0, 500, 1000, 1500

TWO FIBER MODEL

$$S = fe^{-bD(\theta)} + (1 - f)e^{-bD(\theta + d\theta)}$$

 $D(\theta) = \text{diffusion profile for single fiber}$ as a function of angle θ in the plane

 $d\theta$ = angle between fibers

f = volume fraction

HIGH ANGULAR RESOLUTION DTI (HARDI)

Structure of lobes relative to fiber orientation is "non-intuitive"!

FAILURE OF THE STANDARD MODEL

Not only angular issues, but b-value dependencies as well!

$$\frac{S(b)}{S(0)} = fe^{-bD_1} + (1-f)e^{-bD_2}$$

simple two diffusion coefficient model

Ambiguities in the Standard DTI Model

Mono-exponential

SNR=50 $b = 100, \{D_1, D_2\} = \{.01, .01\}$ f = .5

But bi-exponential decay can look mono-exponential SNR=50

 $b = 100, \{D_1, D_2\} = \{.01, .002\}$ f = .5

b

Posterior probability of bi-exponential decay

SNR=50 $b = 100, \{D_1, D_2\} = \{.01, .002\}$ f = .5

Bi-exponential decay

SNR=50

$$b = 1000, \{D_1, D_2\} = \{.01, .002\}$$
 $f = .5$

b

Posterior probability of bi-exponential decay

SNR=50

$$b = 1000, \{D_1, D_2\} = \{.01, .002\}$$
 $f = .5$

Diffusion data in normal human brain

Corpus Callosum

Corona Radiata

The Diffusion Signal

Signal and Distribution are Fourier Transform pairs

Representations of waves

Which coordinate system is most appropriate? What is the symmetry of the problem?

Representations of waves

Cartesian symmetry Fourier basis functions Radial symmetry Which basis functions?

A familiar harmonic decomposition

REPRESENTATION OF SPHERICAL FUNCTIONS

The Diffusion Signal

One could sample all of q-space, but for efficiency, we sample a shell, so we have data on a spherical surface

$$P(\bar{r},\tau) = \int \mathfrak{s}(q,\tau) e^{iq \cdot \bar{r}} dq$$

Not enough q data to do this integral!

Spherical Coordinates

Representations of planar functions

Fourier decomposition:

$$f(\omega, t) = \sum_{j} a_{j} e^{-i\omega_{j}t}$$

Representations of spherical functions

$$f(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_{lm}(\theta, \phi)$$

 $Y_{lm}(\theta, \phi) =$ spherical harmonics

 $a_{lm} =$ spherical harmonic coefficients

SPHERICAL HARMONICS

color represents phase

HARMONIC DECOMPOSITION

Single Fiber

Orthonormal Functions

The spherical harmonics are *orthonormal* They are orthogonal (perpendicular) and normalized

$$\int d\Omega Y_{lm}^*(\Omega) Y_{l'm'}(\Omega) = \delta_{ll'} \delta_{mm}$$

 $\Omega = (\theta, \phi)$

Orthonormal Functions

This allows us to easily calculate the coefficients, given

$$a_{lm} = \int d\Omega f(\Omega) Y_{lm}^*(\Omega)$$

REPRESENTATION OF SHAPES

Cortical surface description in terms of spherical harmonics of maximum degree l_{max}
Representations of spherical functions

the signal $S(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} s_{lm} Y_{lm}(\theta, \phi)$

the angular distribution of fibers

$$P(\vartheta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} p_{lm} Y_{lm}(\vartheta,\varphi)$$

Representations of spherical functions

the signal coefficients

$$s_{lm} = \int_0^{2\pi} \int_0^{\pi} Y_{lm}^*(\theta,\phi) S(\theta,\phi) \sin\theta \, d\theta \, d\phi$$

the PDF coefficients

$$p_{lm} = \int_0^{2\pi} \int_0^{\pi} Y_{lm}^*(\theta, \phi) P(\theta, \phi) \sin \theta \, d\theta \, d\phi$$

Funk-Radon Transform

$$ODF_q(\theta, \phi) = \int_{C_{\theta, \phi}} S(\theta, \phi) \sin \theta \, d\theta d\phi$$

Tuch, et. al. MRM 2001

Funk-Radon Transform

Tuch, et. al.

$$ODF_q(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} o_{lm} Y_{lm}(\theta, \phi)$$

Anderson, et. al. MRM 2001

Anderson, et. al. MRM 2001

Signal SHD

SHD of signal

Signal SHD

SHD of signal ODF signal

Signal SHD

ODF in normal human

anisotropic components of ODF

Diffusion Anisotropy in standard DTI model

Fractional Anisotropy

$$FA = \sqrt{\frac{3}{2} \frac{\overline{(\delta \lambda)^2}}{\overline{\lambda^2}}}$$

SPHERICAL HARMONICS

Laplace Series

$$\begin{aligned} F(\theta,\phi) &= \sum_{l=0}^{\infty} \sum_{m=-l}^{-l} a_{lm} Y_{lm}(\theta,\phi) \\ &= a_{00} Y_{00}(\theta,\phi) + \sum_{l=2}^{\infty} \sum_{m=-l}^{-l} a_{lm} Y_{lm}(\theta,\phi) \\ &= \underbrace{\frac{a_{00}}{\sqrt{4\pi}}}_{\text{isotropic}} + \underbrace{\sum_{l=2}^{\infty} \sum_{m=-l}^{-l} a_{lm} Y_{lm}(\theta,\phi)}_{\text{anisotropic}} \end{aligned}$$

l even

Generalized Diffusion Anisotropy

anisotropic component

HIGH ANGULAR RESOLUTION SAMPLING

HIGH ANGULAR RESOLUTION DTI (HARDI)

anisotropic components of ODF

HARDI Simulation

Descataux, et. al. MRM 2005

HIGH ANGULAR RESOLUTION DTI (HARDI)

Anderson, MRM 54:1194 (2005)

The FORECAST Model

Fiber orientation by SHD of signal spherical harmonic representation of fiber orientation function but with the assumption of cylindrical symmetry

the angular distribution of fibers

$$P(\vartheta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} p_{lm} Y_{lm}(\vartheta,\varphi)$$

The FORECAST Model

Assumption of cylindrical symmetry

$$oldsymbol{D} = egin{pmatrix} \lambda_{\perp} & 0 & 0 \ 0 & \lambda_{\perp} & 0 \ 0 & 0 & \lambda_{\parallel} \end{pmatrix}$$

The FORECAST Model

The FORECAST Model

Assume cylindrical symmetry

$$oldsymbol{D} = egin{pmatrix} \lambda_{\perp} & 0 & 0 \ 0 & \lambda_{\perp} & 0 \ 0 & 0 & \lambda_{\parallel} \end{pmatrix}$$

Assume cylindrical symmetry

Decoupling of D_{\parallel} and D_{\perp} in restricted compartment

Form of E_{\parallel} and E_{\perp} in restricted compartment

F

$$E_{\parallel}(\boldsymbol{q}_{\parallel}, \Delta) = e^{-4\pi^{2}|\boldsymbol{q}_{\parallel}|^{2}\tau D_{\parallel}}$$
$$\tau = \Delta - \delta/3$$
$$\boldsymbol{f}_{\perp}(\boldsymbol{q}_{\perp}, \Delta) = e^{f(D_{\perp})} = \text{restricted diffusion in a cylinder (Neuman)}$$

Form of E_h in hindered compartment

$$E_h(\boldsymbol{q}, \Delta) = e^{-4\pi^2 \tau \boldsymbol{q}^t \boldsymbol{D} \boldsymbol{q}}$$
$$\boldsymbol{q} = \boldsymbol{q}_{\parallel} + \boldsymbol{q}_{\perp}$$
$$E_h(\boldsymbol{q}, \Delta) = e^{-4\pi^2 \tau (|\boldsymbol{q}_{\parallel}|^2 \lambda_{\parallel} + |\boldsymbol{q}_{\perp}|^2 \lambda_{\perp})}$$

3D-FFT of simulated signal

3D-FFT of simulated signal

pig spinal cord phantom

one hindered (i.e., standard DTI) one hindered one and two restricted
The CHARMED Model

Three configurations

One hindered and no restricted (n=0)
One hindered and one restricted (n=1)
One hindered and two restricted (n=2)

Assaf and Basser, Neuroimage 27:48 (2005)

The CHARMED Model

10 shells of b-values from 0-10,000 s/mm^2, from 6 directions (inner shell) to 30 directions (outer shell)

The CHARMED Model

Hindered component

Restricted component

The CHARMED Model

Directionality Map

Corpus callosum

Cingulum

The CHARMED Model

Corpus callosum

Cingulum

The CHARMED Model

Restricted

Assaf and Basser, Neuroimage 27:48 (2005)

HETEROGENEOUS VOXELS AND HIGH ANGULAR RESOLUTION SAMPLING

a voxel with crossing fiber bundles and random spherical cells...

signal from 162 directions

Quasi-realistic HARDI simulation

bundles and random spherical cells...

a voxel with crossing fiber ... the orientation distribution function

Balls and Frank, Magn. Reson. Med. 62:(2009)

The interplay of Parameters

The adjustment of the solution of the solution

HIGH ANGULAR RESOLUTION DTI (HARDI)

signal ODF

162 directions

HIGH ANGULAR RESOLUTION DTI (HARDI)

signal

2562 directions

END

NEXT LECTURE

A General Approach to DTI

Fundamental Limitation of DTI Heterogeneous Voxels

Gray matter

microscopically anisotropic but macroscopically (voxel) isotropic

Komlosh, 2009

What if HARDI doesn't show anisotropy?

Anisotropy on the microscopic scale requires "multiple scattering"^{1,2}

(a). **Microscopic**

(b). Compartment Scale

(c). Ensemble

Of the examples shown, only (c) would appear to have anisotropy using standard DTI techniques.

I. Özarslan, J. Magn. Reson. 199 (2009)2. Özarslan and Basser, J. Chem. Phys. 128 (2008)