Lecture 14
Spatial Normalization
and Group Comparisons

of DTI data
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Registration

1. Rigid Body registration: 6 DOF
2. Athne registration: 12 DOF

3. Non-linear registration: DOF>12

DOF = “Degrees of Freedom”

The number of independent parameters



Rigid Body Registration

A rigid body in d dimensions has
d(d + 1)/2 degrees of freedom:

d translations

d(d -1)/2 rotations

Example:

In 3-dimensions,

3 translations (x,y,z)

3 rotations (Euler angles)




Rigid Body Registration

3 translations

(x,y,2)




Rigid Body Registration

3 rotations D' — RDR!
(X’y )Z)



Afhne Registration

Rigid Body Registration

3 translations 3 rotations

(x,y,2) (x,y,2)

FSL: http://www.tmrib.ox.ac.uk/fsl



Afhne Registration
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3 scalings 3 shears
(x,y,2) (x,y,2)

FSL: FLIRT (athine registration)
FSL: http://www.fmrib.ox.ac.uk/fsl



Afthne Transformation

Yool

> \

¢ b
3 scalings 3 shears
(X)y ’ Z) (X )Y Z)

Shape of region changes, but tissue microstructure doesn't.

Only the orientation changes, so want that part of the athne transtormation



Non-linear Registration

Mean FA images are created using non-linear registration

FSL: http://www.fmrib.ox.ac.uk/fsl



Registration

1. Rigid body transformation used for intra-
subject registration

2. Afhne transformations used for subject-standard
registration (e.g., Talairach) and for eddy current
correction

3. Non-linear transformation used for inter-
subject registration



AFNI's 3dQwarp



AFNI's 3dQwarp

S(x) = source image

B(x) = base image

W (x) = warp function



AFNI’s 3dAllineate

W(x) = Mx

M =4 x 3 matrix

M has 12 parameters to optimize



AFNI’'s 3dQwarp

- Each Wi (x) a polynomial warp over a “patch”

- Patches start with big Wi (z) and shrink

- Cubic patch = 24 parameters ; Quintic = 81 params

- By the end, 1000’s of parameters have been used



AFNI's 3dQwarp
Pros and Cons

Pros:

Nonlinear warping can match anatomical
structures between subjects more closely
than linear transformation

Can also be used for intra-subject
warping for high accuracy matching (e.g.,
pre- and post-surgery)



AFNI's 3dQwarp
Pros and Cons

Cons:

Nonlinear warping can seriously distort
when 1t tries to match in regions that don't
really “fit together” (e.g., 2 gyr1 in one

person, 1 gyrus in another)

Extraneous small features can drive
warping 1n strange ways (unlike linear
transformation)

Partial brain coverage 1s a problem



AFNI's 3dQwarp

Good match to anatomical labels

Align MindBoggle 101 T, Datasets to Separate Template:
Overlap Probability Maps for 3 of the Labeled Regions

LH: lateral orbital frontal
RH: caudal anterior cingulate
RH: insula

o
ANTS & DARTEL 3dQwarp distribution of overlap
& FNIRT probabilities is 2"d order stochastically
run with default dominant in a majority of 62 labeled regions

More yellow in the
overlay means more
90+% overlap in labels

settings




DTI warping

In order to compare DTI data across individuals,
brains must be co-registered to a common coordinate,

or template, space.

This 1s called vpatial normalization



The problem

This requires:

1. Voxels are moved to the correct
location 1n template space

2. Diffusion tensor 1s moved to be
consistent with voxel displacement
while retaining its shape and orientation






Tensor Warping

2

tensor moved

original tensor moved .
: : and reoriented
1mage but not reoriented . .

along fiber direction

Xu, et. al., IEEE TMI 27(3):2008



Tensor Warping

A

image warping incorrectly correct warping with

original image

scales the tensors tensor shape preserved

Xu, et. al., IEEE TMI 27(3):2008



Afthne Transformation

Athne transformation F of tensor can be written

D' = FDF"

but this 1s incorrect because of the aforementioned problem:
only want the rotational component of F



Afthne Transformation

However, F' can be decomposed into

F=UR

U = deformation
R = rotation

The rotation can be found from

R=(FF'") 2F



Afthne Transformation

Then just rotate the tensor according to the usual

D' = RDR'

R 1s constant across the entire image,
and just needs to be computed once

However, shearing and stretching transformations
change the orientation and we've thrown that part of FF away!



Afhne Transformation
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Reorientation depends on 1mage structure
Alexander, et. al., IEEE TMI 20(11):2001



Tensor Warping

—————————————————————————————————————————————————

non-rigid registration methods produce this

Incorrect: shearing parallel to orientation
should have no ettect, but introduces rotation if

not done properl
PTOPELLY Xu, et. al., IEEE TMI 27(3):2008



Tensor Warping
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Correct: shearing parallel to orientation

has no effect Xu, et. al., IEEE TMI 27(3):2008



Preservation of Principal Direction (PPD)

Change 1n fiber direction therefore depends upon its original
direction within the image

One method to take into account etfect of athine transtormation is
Preservation of Principal Direction (PPD)

Alexander, et. al., IEEE TMI 20(11):2001



Anisotropy Indices

prolate oblate

A >SS Ao = A3 Al = A > A3



Prolate

Apply afthine transformation to principle
eigenvector, which rotates it, and define unit
vector 1n rotated direction

- F€1
\Fel\

T,



Oblate

Plane spanned by e; and ey transformed
to plane spanned by Fe; and F'eys so need

to find rotation that rotates I so that its
new e; and e, are in this plane.



PPD algorithm

Compute

F€1 F€2
— no —
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Then find rotation that maps

€1 — "N €o — N9

A separate R 1s computed for each voxel



Group Comparisons
Structure specific techniques

1. Tract-Based Spatial Statistics (TBSS)
Smith, et. al., Neuroimage 31(4),1487:2006

2. Structure-specific statistical mapping (SSSM)
Yushkevich, et. al., Neuroimage 41,448:2008

These methods used the previously discussed
image co-registration methods to generate

“average” parameter maps from which to work



Tract-Based Spatial Statistics (TBSS)

Smith, et. al., Neuroimage 31(4),1487:2006

Structure 1s represented by a “skeleton” derived

from the FA and which torms the backbone

for the statistical analysis



Tract-Based Spatial Statistics (TBSS)

Smith, et. al., Neuroimage 31(4),1487:2006

FA projected into
skeleton «

Maniega and Bastin



TBSS Skeletonization Stages

original mean FA image
and final skeleton

——

L

local FA center of gravity

to find tract perpendiculars

Smith, et. al., Neuroimage 31(4),1487:2006



TBSS Skeletonization Stages
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stage 2: stage 3:
FA second derivative to find ~ Smoothing of perpendicular
remaining perpendiculars direction vector image

Smith, et. al., Neuroimage 31(4),1487:2006



tract perpendicular direction

-+ centre of voxel of interest
(O local FA centre—of—gravity




TBSS: Projecting subjects’ FA onto skeleton

Red-yellow encodes how far voxels are from nearest skeleton voxel.

This 1s used 1n projecting individual FA maps to ensure only
voxels close to skeleton are used

Smith, et. al., Neuroimage 31(4),1487:2006



Tract-Based Spatial Statistics (TBSS)
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Overlay of mean FA map from 33 subjects

Smith, et. al., Neuroimage 31(4),1487:2006



Tract-Based Spatial Statistics (TBSS)

oreen: 0 < FA < 0.2
Y red: 0.2 < FA <0.3

| blue: 0.3 < FA < 1.0

Mean FA map from 69 subjects thresholded into 3 ranges

Smith, et. al., Neuroimage 31(4),1487:2006



Tract-Based Spatial Statistics (TBSS)

TBSS ignores orientation information
since 1t uses a mean FA image.

This can lead to fasciculi that have different

orientation but similar anisotropy
being combined together Into a single structure

Thus TBSS skeleton may not correspond to the
skeletons of the individual fasciculi in these locations



Structure-specific statistical mapping (SSSM)

Yushkevich, et. al., Neuroimage 41,448:2008

Segment major tracts then fit them with
deformable geometric medial models

1.e., continuous medial representation (CM-Reps)

Structure 1s represented by a parametric surface
which allows manifold-based statistical analysis

similar to what 1s used 1n cortical flat-mapping

Motivated by sheet-like structure of many brain organs



Structure-specific statistical mapping (SSSM)

Basic procedure:

1. Spatially normalize all DTT data to a single
“average” data set using deformable DTI registration (Zhang, 2006).
2. Since orientation information is preserved,

fiber tract mapping can be done on the “average" brain

3. Segment fiber tracts from individual regions to create a
representation of that region.

4. Create CM representation of that region (skeleton and boundary)
5. Generate statistics over volume along spokes to skeleton for each
subject.

6. Map statistics onto boundary surface and now can compare
amongst subjects






Structure-specific statistical mapping (SSSM)

a) Boundary and pruned b) Continuous medial c) Fit of CM-Rep model
skeleton. Color is representation following o binary segmentation
distance to skeleton triangulation, and (skeleton and boundary)

boundary surface (right)

Yushkevich, et. al., Neuroimage 41,448:2008



Yushkevich, et. al., Neuroimage 41,448:2008

SSSM: Model fits for 6 tracks

segmentation cm-rep skeleton cm-rep boundary

T
O

ONN  J1S 471

Colors mark different regions (except in Column 3, which 1s a t-map)



SSSM: Combined model fits

Fiber tracts CM-Rep skeletons

Yushkevich, et. al., Neuroimage 41,448:2008



SSSM: Cluster analysis of ADC

Tensors in volume summarized along spokes according to two strategies

Max FA strategy Tensor averaging strategy

Color represents t-score for hypothesis ADC(control)>ADC(abnormal)

Yushkevich, et. al., Neuroimage 41,448:2008



Max-FA t-map

ADC group Gt t-score




Max-FA Clusters Tensor Avg. Clusters
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FAST AND ACCURATE REGISTRATION OF
MULTI-MODALITY
NEURO-MRI DATA

NewaVierhod:
SyinplectomorphictRegistration (Sym=-Reg)



















