
28 Basic Di↵usion Tensor Imaging

28.1 Introduction

1

Let us pause here for a moment and review what has been learned so far. In Chapter 14 we
saw how an NMR signal can be generated and detected from a sample within a coil. We then
elaborated on this idea in two di↵erent, and to this point, unconnected, ways. The first was to
demonstrate (Chapter 16) that localization of the signal from di↵erent spatial regions of the
sample could be achieved by the application of magnetic field gradients and reconstruction by
Fourier transformation. This is the process of magnetic resonance imaging (MRI). We extended
these ideas to ultrafast (single shot) imaging in Chapter 18, such as echo planar imaging (EPI),
that allowed us to acquire images rapidly enough to obviate bulk subject motion, at the expense
of greater sensitivity to a number of physical e↵ects that create artifacts, that we nonetheless
could mitigate. But we also reconsidered the simple case of a sample in a coil in the presence
of a bipolar gradient pulse and discovered (Chapter 25) that di↵using spins produced a signal
loss due to their motion through the gradients. Moreover, with an appropriate model for the
di↵usion process, the di↵usion tensor could be estimated, from which we could derived scalar
measures related to the mean di↵usivity and the di↵usion anisotropy. The bipolar pulse had the
additional feature that it refocused stationary spins at its completion. In the present chapter we
are going to tie this all together for the following purpose: To combine the di↵usion weighting
and subsequent analysis we examined for a small sample with the spatial localization (MRI)
on a full human brain in order to produce images with di↵usion weighting from which can be
performed localized (e.g. in every voxel) estimation of the di↵usion tensor. This entire process is
called di↵usion tensor imaging , or DTI .

As mentioned in the Introduction and in Chapter 25, the order I’ve chosen to present the
aformentioned aspects of this process is somewhat non-standard, and at first glance perhaps
even disconnected. But that is precisely the point. The payo↵ comes here in this chapter where
we see that the process of DTI is really just the combination of several experimental procedures
and physical processes that stand on their own. These distinctions are important to grasp because
one of the biggest hurdles I’ve encountered in teaching DTI is the confusion over what aspects
are related to di↵usion, which are related to imaging, and which are related to reconstruction and
estimation. This motivated the presentation in terms of the separated components to be combined
only after each is understood in its own right. The central fact that allows this simplification is
that bipolar gradients a↵ect di↵using spins but leave stationary spins unchanged. As we shall
see, this allows us to really just combine the results of these aformentioned chapters into one

1 Make it clear here that you’re just looking at the single fiber voxel model, etc, etc.
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procedure. And the pleasing result is that this central chapter is relatively short: you have all
the background you need to understand how DTI works.

Now, having said that, we still must proceed with caution, and state from the outset that our
goal in this chapter is to describe the most basic form of DTI. By “basic” we mean specifically:2

• The di↵usion is assumed to be Gaussian
• There is no subject movement
• Di↵usion gradients cause no distortions
• Di↵usion through imaging gradients has no e↵ect

In later chapter we will relax these restrictions and consider important extensions to DTI that
are necessary to more accurately characterize complex neural tissues.

28.2 Di↵usion in a bipolar gradient: Review

In the previous chapter we investigated the e↵ect of di↵usion in a bipolar gradient, the results
of which we review here. We found that a bipolar gradient rephased all of the stationary spins,
causing a gradient echo. But this required that the spins be stationary because the rephasing
required that the spins were subject to an equal and opposite gradient induced field. Since this
field is spatially dependent, by definition, any movement of a spin would cause it to have a
mismatch between the magnitude of its starting and ending phases, and thus we would expect
that the total signal, no longer being from spins completely in phase, would be reduced. This is
precisely the e↵ect produced by di↵using spins: since their final location is di↵erent from their
initial location, their phases are di↵erent, and thus all the spins no longer come back into phase
and the final signal is reduced. How much the signal is reduced depends on how much they
go out of phase, which depends on the particulars of their motion. Since it is impractical (ney,
impossible) to follow the trajectory of individual spins, we must resort to probabilistic arguments.

So, in order to determine the signal in the presence of moving spins, we need to know where they
start and where they end up, and then figure out the phase they’ve accrued by changing locations
both in the presence of the gradients (i.e., during the time �) as well as what happens in the
time � between the centers of the gradients (i.e., the area/2). This problem sounds complicated.
But what is remarkable is that, at least for the most basic case, the answer to these questions
is surprisingly simple. We’ll give a sketch of the answer here, and then go into the details in the
rest of the chapter about how we arrived at this, what assumption were needed, and then touch
on where those assumptions fail. The details of that will have to wait for a later chapter.

Let us return to our simple model of Gaussian di↵usion. Recall the meaning of the Gaussian
distribution that characterizes di↵usion: it is the probability of finding a spin at a particular
location after a certain time. This is just what we require in order to determine what location
changes, and hence what phase changes, are accrued during the bipolar pulse. The answer, as we
shall see, is that the signal decays in a very simple way as a function of the applied gradients,
whose amplitudes and parameters are contained within a parameter b, called the b-factor . For
an anisotropic tissue characterized by Gaussian di↵usion with a di↵usion tensor D, we found
that the signal in the presense of a bipolar gradient characterized by the b-factor is (Eqn ??)

s(q, ⌧) = e�b

˜

D (28.1)

2 Have we listed all our implicit assumptions of this chapter?
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where s ⌘ s(b)/s
o

is the ratio of the di↵usion weighted signal to the unweighted (i.e., b = 0)
signal s

o

⌘ s(b = 0). The b-factor is given by

b = q2⌧ (28.2)

where q ⌘ |q| is just the area of the gradient that is pointing along the q̂ direction (Eqn ?? ) and

D̃ ⌘ q̂

t

Dq̂ (28.3)

is the projection of the di↵usion tensor D along the direction q̂.
So the sensitivity of the bipolar gradient to di↵usion depends upon the area squared: doubling

the gradient amplitude quadruples the di↵usion sensitivity. Note also that if the gradient is turned
o↵ (G = 0), then b = 0 and s(b) = s

o

. So turning o↵ the gradient pulse gives us the constant s
o

.
The decay is also proportional to the time ⌧ , often called the di↵usion time, which is given by

⌧ = � � �/3 (28.4)

and so is proportional to the time �, minus a term proportional to the gradient width. Thus
putting the gradients farther apart increases the sensitivity. This makes sense, since the longer
spins are allowed to di↵use, the greater the spread in their locations, thus the greater the vari-
ations in the fields they subject to, and thus the wider the spread of phases, and thus the more
signal loss when they’re all added up.

And, because the di↵usion tensor represents variations in the di↵usion along di↵erent spatial
directions, this decaying exponential characteristic of the signal depends upon which direction
we measure the di↵usion along. That is, which direction the di↵usion weighting is along. We
found, using the vectorial nature of gradients, that it was a simple matter to point the di↵usion
weighting along any desired direction by suitable combination of bipolar gradients along the three
principal axes of the scanner. Performing measurements along di↵erent directions and using our
model for the di↵usion process, it was then possible to estimate the di↵usion tensor.

Let us now turn to extending this to the imaging process. The key new feature is the incorpo-
ration of the di↵usion weighting gradient into an imaging sequence.

28.3 Creating di↵usion contrast in images: Di↵usion Weighting Gradients

We now come to an important juncture in the book. We saw in Chapter 16 how to create MR
images, and in Chapter 25 how the bipolar gradient causes a signal intensity that is proportional
to di↵usion. How can we then proceed to the real work of this book, which is to combine the
two to get di↵usion weighted images? Given the complicated sequence of RF and gradient pulses
necessary to form a complete MR image, this might seem like a daunting task. But, surprisingly,
this is not so! And all because of the nice qualities of the bipolar gradient pulse (recall that we
use this term as a shorthand to refer specifically to two gradients of equal areas and opposite
sign). Recall the two essential properties of the bipolar gradient pulse: 1) Stationary spins are
refocussed at the end of the second pulse; 2) Di↵using spins su↵er a signal loss proportional to
the amplitude and timing of the two pulses. From these two facts alone we can develop the basic
method of DTI. Because a bipolar gradient refocussing stationary spins, it can be inserted into
a pulse sequence, as long as it doesn’t interfere (i.e., overlap) with any of the imaging gradients,
and be invisible to the imaging portion of the pulse sequence! And so, from fact (2), we can
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(a) Spin echo EPI acquisition.
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(b) Di↵usion weighted spin echo EPI acquisi-

tion.

Figure 28.1 Spin echo EPI di↵usion weighted pulse sequence. Bipolar di↵usion weighting gradient pulses

(gray lobes) are inserted into a basic spin echo EPI pulse sequence without interfering with the imaging

process because a bipolar pulse refocusses stationary spins and is thus invisible to the pulse sequence

as long as it does not overlap with the imaging gradients.

add bipolar di↵usion weighting gradients whose amplitudes and timings we can manipulate to
probe the di↵usion characteristics of our tissue, but create MR images simultaneously. The result
is MR images that have di↵usion weighting everywhere, ie, in each voxel, thus allowing us to
investigate the spatial variations of whatever di↵usion related quantities we can measure within
a voxel. Such images are called di↵usion weighted images .

The most straightforward, and most common, method of combining di↵usion weighting with
and imaging sequences is to insert a bipolar pair of di↵usion weighting gradients into a standard
spin echo pulse sequence, as shown in Figure 28.1.

Note the important fact that the second lobe of the di↵usion gradients in Figure 28.1 is the
same sign as the first lobe because of the presence of the 180� refocussing pulse This has been
implicit in our previous description of ”e↵ective gradients” (Section ??), in which we replace two
gradient on either side of the 180� pulse with a bipolar pair. This allowed us to discuss di↵usion
e↵ects without having to mention and RF pulses. Throughout what follows we will ignore the
e↵ects of the refocussing pulse(s). In practice, we have to be careful about where these di↵usion
weighting gradients are placed in the pulse sequence, and what system imperfections they are
subject to. These will be discussed in detail in later chapters.

Notice the important fact that the di↵usion weighting gradients are applied independently on
each axis in Figure 28.1. That is, the second lobe of the bipolar gradient on the x-axis refocusses
spins brought out of phase by the first lobe on the x-axis, regardless of what’s happening on
the y and z axes. So the bipolar gradients on each of the axes refocus stationary spins on their
respsective axes, and produce di↵usion weighting along these axes as well, independently of what
happens on the other axes. But now recall the important and very practical fact that gradients

add like vectors. Therefore, we see that the combined e↵ect of simultaneously applied di↵usion

weighting gradients is the rotation of the direction of di↵usion sensitivity in the direction defined

by the resulting combined gradient vector. This was shown in Figure 29.1. Since we, the system
operator, controls these gradients, we can point them in any directions we want. For example, in
Figure 28.5 is shown di↵usion encoding along the three principal scanner axes and an arbitrary
direction.

So now we combine these ideas - bipolar di↵usion weighting gradient put into a spin echo
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(a) Di↵usion weighting parallel to the
right splenium of the corpus callosum.

(b) Di↵usion weighting parallel to the left
splenium of the corpus callosum.

Figure 28.2 (Use newer images!) Two images with di↵usion weighting in di↵erent directions (shown

by the green arrows) approximately parallel and perpendicular to the left and right splenia of the

corpus callosum. This example was specifically chosen because the two structure are close to

perpendicular, so the two chosen gradient directions applied along these structures are close to

perpendicular to one another. In both cases, there is signal loss in the portion of the corpus callosum

parallel to the applied gradient, but not that perpendicular to it (white arrows).

sequence with our ability to di↵usion encode in di↵erent directions, and see what happens. In
Figure 28.2 is shown two images with di↵usion sensitivity along two di↵erent directions chosen to
be along the right and left splenia of the corpus callosum. This example was specifically chosen
because the two structure are close to perpendicular, so the two chosen gradient directions applied
along these structures are close to perpendicular to one another. In both cases, there is signal loss
in the portion of the corpus callosum parallel to the applied gradient, but not that perpendicular
to it (white arrows).

28.4 Interlude: What is the e↵ect of the imaging gradients?

If di↵usion through gradients results in a directionally dependent signal loss, don’t the imag-
ing gradients have some e↵ect? In fact, they do, but in most clinical applications this e↵ect is
negligible. That is not the case is high field imaging using high powered gradients, however. To
understand the e↵ect of imaging gradients, it is useful to look at the di↵usion weighting process
in a di↵erent way.

In the simple case of Gaussian di↵usion, the spread of spins in the spatial domain is equivalent
to a convolution in the image domain by a Gaussian kernel. This is shown schematically in
Figure 28.3 for the 1D case. As we saw in Section 11.5, convolution of the two functions I(x)
and H(x) is one domain (x) is equivalent to multiplication of their Fourier transforms Ĩ(k) and
H̃(k) in the conjugate domain:

I(x) ? H(x) = Ĩ(k)H̃(k) (28.5)
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(a) A group of spins at time t = 0 spreads into a Gaussian distribution at time t = ⌧ with
a standard deviation � =

p
2D⌧ .
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(b) The process in (a) is equivalent to convolution of the initial distribution with a Gaussian

with standard deviation � =
p
2D⌧ .

Figure 28.3 Gaussian di↵usion is equivalent to convolution in the image domain.

where ”̃” denotes the Fourier transform. In this case x is the spatial (image) domain and k is the
fourier (data acquisition) domain. Let I(x) denotes the image and H(x) the convolving kernel
due to di↵usion. Because the width of Gaussian convolution kernel H(x) is very small compared
to the voxel dimensions (⌧ = 100 ms ! � ⇡ 15 µm), its Fourier transform H̃(k) is very broad
with respect to the k-space data Ĩ(k). This is illustrated in Figure 28.4 Because the width of
H(x) is very small, its Fourier tranform H̃(x) (the red curve in Figure ??) is very broad. The
result is that small gradients (e.g., imaging gradients on a typical 3T clinical system) produce
little di↵usion e↵ect and much larger di↵usion weighting gradients that shift the center of k-space
toward the edge of H̃(x) are needed to produced a measureable e↵ect. This is not necessarily
true on high field high performance systems where the imaging gradients can be quite large.3

28.5 The spatial variations of the di↵usion attenuation

Now that we have seen that the imaging process can be integrated with the di↵usion weighting
process (which consists of bipolar di↵usion weighting gradients on each axis), the question, finally,
is “What is the signal attenuation in each voxel?”. Well, for our simple model of di↵usion as
unrestricted (free) Gaussian, we already know the answer to this, and with a slight addition

3 Give examples of gradient values at 3T and on, say, and 11.7T system.
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Figure 28.4 Convolution of the image by the di↵usion kernel H(x) is equivalent to multiplication of the

data by the Fourier transform of the di↵usion kernel. Because the width of H(x) is very small, its

Fourier tranform

˜H(x) (red) is very broad. The result is that small (e.g., imaging) gradients produce

little di↵usion e↵ect and much larger di↵usion weighting gradients that shift the center of k-space
toward the edge of

˜H(x) are needed to produced a measureable e↵ect.

to our notation we can make it obvious. The signal attenuation in 3-dimensions from a bipolar
di↵usion weighting gradient is given by Eqn 27.3. This is the signal model for a voxel so is easily
extended to express the spatial variation of the di↵usion in the entire image, the distribution of
intensities in three dimensional space x = {x, y, z} is

s(x, b) = s
0

(x) e�b

˜

D(x) + ⌘(x, b) (28.6)

where D̃ ⌘ û

T ·D ·û is the projection of the di↵usion tensor along the applied di↵usion weighting
gradient direction û, b = q2⌧ = g2�2 (� � �/3) is the b-factor, and where ⌘(x, b) is the noise and
s
0

(x) is image acquired without di↵usion weighting but all other timing parameters the same
as in the di↵usion weighted images. This is important because the relaxation contrast, which
depends on the timing parameters, must be the same in s(x, 0) as in the di↵usion weighted
images in order that they are normalized correctly so that signal loss due to T

2

relaxation is not
confounded with that from di↵usion weighting (see the discussion surrounding m

0

in Eqn ??).
The image s(x, 0) is often referred to as the ”b equals zero” image. Now, di↵usion weighted
sequences typically have long echo times TE in order to accommodate the di↵usion weighting
gradients. An image s(x, 0) acquired with the same timing parameters but without di↵usion
weighting gradients will thus tend to be T

2

�weighted (see Chapter 17). The image s
0

(x) is thus
also often referred to as the ”T

2

” image. The noise ⌘(x, b) is generally spatially varying, although
we will simplify it by assuming that it is not: ⌘(b) = ⌘(x, b).
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The application of di↵usion weighting gradients therefore produces a spatial pattern of signal
attenuation throughout the image concomitant with the spatial distribution of di↵usion tensors
D(x). In this chapter we will treat each of the voxels as independent, so that we reconstruct
the di↵usion tensor in each voxel without any reference to its neighbors. Thus in this section we
will figure out what we need to do to reconstruct D and then just repeat the procedure for each
voxel. This is again the procedure in standard DTI. Later, in Chapter 40 we will be concerned
with the spatial relationship of the di↵usion in the voxels and then we’ll have to consider the
fact that the local di↵usion tensor is really a component of a more spatially extended di↵usion
field.

The noise ⌘(x, b) is assumed to be Gaussian with zero mean and variance �2

⌘

: that is ⌘(x, b) ⇠
N(0, �2

⌘

), because, as we found in Chapter 19, this is a good model for the background noise
in MR images. This, of course, is predicated on using the complex MR images, rather than the
magnitude images, which have noise that is characterized by a Rayleigh, (?), rather than a Gaus-
sian, distribution (Chapter 19) 4. It is common practice, however, to use the magnitude images,
which means that the assumption of Gaussian noise is incorrect. This will become important for
low SNR experiments, such as those using high b-values, where the noise becomes comparable
to the signal.

Another implicit assumption in the modeling of ⌘(x, b) as Gaussian is that all other noise
sources that are not thermal have been eliminated. In practice, to perform an experiment precisely
enough to make this statement even approximately true is a non-trivial a↵air. Su�ce it to say
for now that the largest sources of error in DTI or not thermal noise, but eddy currents and
field distortions. We will return to this issue in Chapter 30 where we demonstrate the practical
necessity of reducing these artifacts and show some methods by which this can be accomplished
to a reasonable degree.

It is important that the di↵usion weighting gradients in Figure 28.1 along each imaging axis
do not overlap the imaging gradients or they would interfere with the imaging process5. But
the di↵usion gradients on each axis can be applied simultaneously, and in fact this is of critical
importance. For, just as in imaging, gradient fields add as vectors so that combinations of simul-
taneously applied di↵usion weighting gradients along the magnet’s {x, y, z} coordinates can be
used to make the net di↵usion weighting gradient occur in any direction. An example of s

0

(x)
and some di↵usion weighted images along di↵erent directions is shown Figure 28.5. Notice that
the gradient directions are defined in terms of the unit vectors û. For the same timing parameters
and gradient strength, the b � value remains the same, although the direction of the di↵usion
sensitivity changes. The family of the endpoints of all arrow that are of constant length but
arbitrary orientation form the surface of a sphere. Therefore, the surface of possible di↵usion
gradient vector endpoints for a constant b-value but arbitrary direction is a sphere. This is called
the di↵usion sampling sphere, and depicted in Figure 28.5(k). From this week see also that the
length of the vector, and thus the sphere’s radius, is the b-value. Thus sampling spheres for dif-
ferent b� values are thus concentric spheres. Here again is another system for which is naturally
described by a spherical coordinate system (Section 2.3).

4 need discussion of Rayleigh (or is it Riccian?) noise in MRI!
5 For gradient/imaging cross term interactions, see Mattielo refs in the Basser, Jones NMR in Biomedicine

review.
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Figure 28.5 Directional di↵usion encoding. (Top row) Di↵usion weighted images EPI images at 3T with

b = 2000s/mm2
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28.6 Displaying the estimated tensor

There are several display methods that are particularly useful in visualizing the local structure
of di↵usion. As we saw in Section 27.2, estimation of the di↵usion tensor is tantamount to recon-
structing the 3D Gaussian pdf, from which can be constructed the contours of the probability
distribution of particle positions: the di↵usion ellipsoids. This can be calculated in each voxel,
since the di↵usion tensor is estimated in each voxel, and displayed as an image, as in Figure 28.6.
This method of presentation is useful not only in allowing us to quickly assess the di↵usion char-
acteristics of individual voxels, but also to give a more global picture of the patterns of di↵usion
amongst voxels. We’ll follow this line of thought in the next section.

(This next figure was in adv-hard.tex for some reason. I moved it here but need

text.)

An example in human data is shown in Figure 28.7.
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Figure 28.6 The reconstructed di↵usion ellipsoids in a selected region of the brain.

Figure 28.7 The estimated di↵usion ellipsoids in a normal human brain. Note that the largest are in

regions of CSF, which has the highest mean di↵usivity. The anisotropy, on the other hand (shown in

underlay in the form of the FA) accentuates the white matter, where it is largest.

28.7 Parameter maps

We have seen that the basic DTI method combines the results of Chapter 25 with the imaging
methods of Chapter 18 to acquire data that is di↵usion weighted along multiple directions. In
Chapter 29 we saw how to estimate the di↵usion tensor from this data. The beauty of MRI
process is that the result of combining these operations is that we can now perform the same

analysis we did in Chapter 29 for a single sample in each voxel. That is, we can essentially treat
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(a) axial (c) coronal(b) sagittal(a) Axial(a) axial (c) coronal(b) sagittal(b) Sagittal(a) axial (c) coronal(b) sagittal (c) Coronal

Figure 28.8 Anatomical images from a normal human subject shown at three orthogonal orientations.

inversion recovert T1-weighted 3D fast spoiled gradient recalled echo pulse sequence with parameters:

flip angle ↵ = 12

�
, echo time TE = 3ms, repetition time TR = 8ms, matrix size =

(RL,AP, IS) = (172⇥ 256⇥ 256), field of view FOV = (170⇥ 240⇥ 240)mm for a resolution of

(1⇥ .938⇥ .938)mm. (Data courtesy of Dr Susan Tapert, UCSD.)

each voxel as an individual sample, and follow that analysis procedure outlined in Chapter 29.
Specifically, once the gradient directions are specified, and the b-matrix constructed, the data in
each voxel are fit to a model. For the Gaussian model, we simply plug in the data in each voxel
to a routine such as AFNI’s 3dDWItoDT which does a non-linear fit for the di↵usion tensor
under the assumption of additive, Gaussian noise, returning the eigenvalues and eigenvectors.
The eigenvalues will tell us about the magnitude of the di↵usion along the principal directions
of the di↵usion ellipsoid, as defined by the eigenvectors. Mathematically,

D

"
measured

=

R

t

"
eigenvectors

D⇤

"
eigenvalues

R

"
eigenvectors

(28.7)

Having determined the eigensystem (i.e., the eigenvalues and eigenvectors) in each voxel from the
measured di↵usion tensor, we can then do several important things. First, we can create the maps
of the di↵usion magnitude parameters, such as the mean di↵usivity and the fractional anisotropy,
from the eigenvalues. We can also look at the direction of maximum di↵usivity from the largest
eigenvector, which should tell us something about the underlying structure. And from both the
eigenvalues and the eigenvectors we can reconstruct the di↵usion ellipsoid or, equivalently, and
estimate of the measured apparent angular di↵usion coe�cient (i.e., the “shape” of di↵usion we
discussed in Section 27.4). We’ll consider each of these in order in the next sections.

We can now apply to each voxel the procedures for estimation of the di↵usion tensor discussion
in the last chapter. From the eigenvalues in each voxel we can calculate the mean di↵usivity D

and the fractional anisotropy and make images of those parameters. These are shown for a set of
data collected on a normal human brain at 3T whose anatomical images are shown in Eqn 28.8.
The mean di↵usivity and the fractional anisotropy in each voxel of a di↵usion tensor image is
shown in Figure 28.9. A very useful way to display this information is to overlay the parameters
in color over the high resolution anatomical images, displayed in a grayscale. The mean di↵usivity
in each voxel of a di↵usion tensor image (Section 29.6) is shown overlayed on the anatomical
imaging in Figure 28.10. An example of the FA calculated from the di↵usion tensor in each
voxel (Section 29.7) of a di↵usion tensor image is shown overlayed on the anatomical imaging in
Figure 28.11. Notice that the area of high mean di↵usivity are in the regions of cerebro-spinal



518 Basic Di↵usion Tensor Imaging

(a) Axial MD (b) Axial FA

(c) Sagittal MD (d) Sagittal FA

(e) Coronal MD (f) Coronal FA

Figure 28.9 Mean di↵usivity (left) and fractional anisotropy (right) images from a normal human

subject shown at three orthogonal orientations. Data were acquired using a di↵usion weighted spin

echo EPI pulse sequence with the following parameters: TE/TR = 93/10, 900ms, FOV = 240mm,

matrix = 128128, 34 contiguous slices, slice thickness = 3mm, b-value = 1500s/mm2
2, one average.

(Data courtesy of Dr Susan Tapert, UCSD).

fluid, or csf , which is a freely di↵using liquid that fills the ventricals and the sulci of the cortex6.
The fractional anisotropy images, in contrast, show larger values in regions containing white
matter, since the di↵usion is higher along the fiber axis than in the direction perpendicular to
that axis. While mean di↵usivity can be an important clinical indicator, in stroke for example
(e.g., (?, ?, ?, ?, ?)), in many white matter diseases it is the fractional anisotropy that is of
greatest interest, since it preferentially distinguished white matter from gray matter. Also, in

6 better have a neuroanatomist check this sentence!
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(a) axial (c) coronal(b) sagittal(a) Axial(a) axial (c) coronal(b) sagittal(b) Sagittal(a) axial (c) coronal(b) sagittal (c) Coronal

Figure 28.10 Mean di↵usivity images from a normal human subject shown at three orthogonal

orientations (top) and overlayed in color on the anatomical images in Figure 28.8 (bottom). (Data

courtesy of Dr Susan Tapert, UCSD).

(a) axial (c) coronal(b) sagittal(a) Axial(a) axial (c) coronal(b) sagittal(b) Sagittal(a) axial (c) coronal(b) sagittal (c) Coronal

Figure 28.11 Fractional anisotropy images from a normal human subject shown at three orthogonal

orientations (top) and overlayed in color on the anatomical images in Figure 28.8 (bottom). The FA

threshold is .3. (Data courtesy of Dr Susan Tapert, UCSD).

many neuroscience application it is the neural connections that are of greatest interest, and thus
the fractional anisotropy, as a measure of fiber orientation, is the parameter of interest. With
this in mind, we show an additional example of the fractional anisotropy in several axial slices
in a normal human brain is shown in Figure 28.12 with a greater number of di↵usion directions
and a higher signal-to-noise.

28.8 The direction of di↵usion: The principal eigenvector

In the previous section we found that displaying the di↵usion ellipsoid gave us a nice visual rep-
resentation of the patterns of di↵usion. One can take this notion one step further by considering
what our simple Gaussian model of di↵usion is suggesting. The longest eigenvector is associated
with the highest di↵usion, the principal eigenvector is assumed to be in the direction of the fiber.
Therefore, if the 3D Gaussian model is correct, the principal eigenvector can be used as a proxy

for the fiber direction. To e↵ectively visualize the vectors, the following color scheme is typically
employed: The principal axes of the scanner ({x, y, z}) are assigned, respectively, the colors red,
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Figure 28.12 Fractional anisotropy in several axial slices in a normal human brain. (Put imaging

parameters here! This is 61 directions!)

green, and blue. An arbitrary vector is assigned a color that is a mixture of these three colors,
with the amount of each color determined by the projection of the vector along the principal
axes. For example, a vector at a 45� angle in the x � y is projected equally along the x and y

axes, and thus is assigned half red and half green. The color schemes for each principal plane
are shown in Figures 28.13a- 28.13c. An example is shown in Figure 28.13. One di�culty with
representing the direction with arrows as in Figure 28.13 is that it if often quite hard to see these
arrows in a full image. For this reason, an popular alternative scheme is to do away with the ar-
rows and instead represent the direction of the principal eigenvector in a voxel by the directional
color. Voxels with principal eigenvectors pointing along these directions are given these colors.
This visualization technique allows one to quickly and easily assess the estimated fiber directions
over an entire image, as is evident from the high resolution rat brain DTI images Figure 28.14.
Combining the FA along with the principal eigenvector is also a useful way to combine parameter
maps, as shown in Figure 28.15.
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(a) x� y plane

(b) y � z plane

(c) z � x plane
(d) The principal eigenvectors overlayed on anatomical scan.

Figure 28.13 Color encoding scheme for principal eigenvectors.

Suggested Reading
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⌧⌧

Figure 28.14 Color encoding the of the principal eigenvectors in the principal slices in a high field

(11.7T) DTI data of a rat brain (data courtesy of Dr. J.M. Tyszka, CalTech).

⌧

(a) Axial

⌧

(b) Sagittal

⌧

(c) Coronal

Figure 28.15 Fractional anisotropy and the principal eigenvectors images from a normal human subject

shown at three orthogonal orientations (top) and overlayed in color on the anatomical images in

Figure 28.8 (bottom). The FA threshold is .3. (Data courtesy of Dr Susan Tapert, UCSD.)


