
27 Angular variations: The shape of

di↵usion

27.1 Sensitizing in Arbitrary Directions

We have now demonstrated how di↵usion in the presence of a bipolar gradient e↵ects the MR
signal. We consider the one-dimensional case not only because of its simplicity, but also because,
as we discovered earlier, only the di↵usion along the gradient direction has an e↵ect on the signal,
and the single bipolar gradient we examined is only along a single direction, by definition. Of
course, the distribution of particles that is evolving in time (according to the simple Gaussian
model, for example), is distributed in 3-dimensions, and because it can be anisotropic, we need
a way to sensitize to di↵usion in arbitrary direction. In this section we make a very important
generalization, but with very little e↵ort, by recalling a simple result from Chapter 16: gradients
add like vectors, as shown in Figure ??. We can immediately conclude then that this will also
be true for bipolar gradients applied along di↵erent axes, as shown in Figure ??. Although we’ve
shown an example of 2-dimensions, we can obviously extend this to 3-dimensions by adding a
gradient along the ẑ direction (which we’ll do later). This means that the 1-dimensional analysis
we have performed above can be along any direction. It is still a 1 (spatial) dimensional problem,
however. But at this point where we’re headed should be clear: We have a 3D anisotropic spatial
distribution of spins that will give a signal that will depend upon the spatial direction along
which we measure. And we know now that we can measure along any directions we choose.
So, by measuring, along several di↵erent directions and observing the variation in signal with
direction, can we infer the underlying distribution of spins? Yes (or you wouldn’t be reading this
book).
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Figure 27.1 Di↵usion sensitization along any direction can be achieved by suitable combinations of
bipolar di↵usion weighting gradients.
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However, although it is a simple step to extend our ability to sensitize the experiment to
di↵usion along any direction and we can do this in the presence of a 3D distribution, the form
of the signal becomes significantly more complicated to describe. Fortunately, you already have
learned all the methods necessary to do so. Formally, the complication is describing how the
signal measured along arbitrary directions represents the underlying distribution of spins (an
anisotropic 3D Gaussian, for example). Conceptually, there is an often more di�cult problem:
what can be thought of as the “shape” of the di↵usion weighted signal as we gather together our
samples along several directions. So first we will do the “formal” mathematics part by analyzing
the 3D Gaussian distribution, and then we will consider this problem of the shape of di↵usion.

27.2 3D Gaussian di↵usion in a bipolar gradient

We now consider the problem of applying a di↵usion weighted gradient along an arbitrary direc-
tion in 3D in the presence of a 3D Gaussian distribution described by:

p(r̄, ⌧) =
1p

|D| (4⇡⌧)3
e�¯r

t

D

�1
¯r/(4⌧) = N(0, 2D⌧) (27.1)

where ⌧ = � � �/3. Substituting this into Eqn 25.23 gives the signal

s(q, �) =
1p

|D| (4⇡⌧)3

Z
e�¯r

t
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�1
¯r/(4⌧)e�iq·¯r dr̄ (27.2)

can be done analytically (Appendix C), giving a signal from di↵usion weighting gradients along
an arbitrary direction applied to a 3D Gaussian distribution as

s(q, ⌧) = s(0)e�bD + ⌘(q) (27.3)

where again the assumption has been made that the noise eta(q) is additive. The first term on
the right hand side can be written in component form as

s(q, ⌧) = s(0) exp

0
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and the di↵usion tensor is symmetric: D

t = D and its elements are real: D
ij

2 R. Note that
even though we are applying three di↵erent sets of di↵usion weighting gradients (corresponding
to the three lab coordinate axes {x, y, z}), the b-matrix involves terms only constructed from
pairs of gradients. Note that Eqn 27.6 can be written in the form

bD = ⌧q

t · D · q (27.6)

so Eqn 27.3 can be written

s(q, ⌧) = s(0)e�⌧q

t·D·q + ⌘(q) (27.7)
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This form is very useful both computationally and for seeing geometrically what the signal looks
like.

bD = ⌧q

t · D · q = q2⌧ q̂

t · D · q̂| {z }
˜

D

(27.8)

where the q-vector is given by q = qq̂ where q = |q| is the magnitude of q-vector and q̂ = q/q is
the unit vector in direction of q-vector. Therefore the signal can be written

s(q, ⌧) = s
o

e�bD = s
o

e�b

˜

D + ⌘(q) (27.9)

where

D̃ = q̂

t · D · q̂ (27.10a)

b = �q2⌧ (27.10b)

This is the same form as Eqn 25.33 except in three-dimensions: The signal decays in an exponen-
tial fashion along the direction of the gradient, as defined by q. The di↵usion coe�cient along
that direction is D̃. The form Eqn 27.10 is very useful when calculating the nominal b-value for
an experiment. However, it assumes ideal gradients, thus allowing the amplitudes and directions
to be disassociated. However, in practice, the imaging gradients interfere with the di↵usion en-
coding gradients and this ideality is not realized. So, in practice, it is more useful to keep this in
the form bD and speak of the b-matrix b:
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This form allows the individual q values to be calculated. One therefore speaks of “calculating the
b-matrix” when performing an actual DTI experiments so as to account for the actual gradients
values applied. The di↵usion tensor can then be calculated (as we discuss in the next chapter)
by fitting the signal equation Eqn 27.9. But note that this equation is a function of both b-value
magnitude (i.e., for di↵erent magnitudes of q) and the direction so the fitting is more complicated
(and more subtle) than in the case of the di↵usion coe�cient in Section 25.6.

27.3 The orientation of the di↵usion tensor

We have found that for 3D Gaussian di↵usion our signal is

s(q) = e�b

˜

D + ⌘(q) (27.13)

Now recall from Section ?? that the di↵usion tensor D in the Gaussian model of di↵usion is
a real, symmetric 3 ⇥ 3 matrix and so can be diagonalized by a similarity transformation with
rotation matrices (Section ??). In other words, it can be written in the form

D = R

t

D

⇤

R (27.14)
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where D

⇤

is the diagonal matrix with the elements along the diagonal that are the di↵usion co-
e�cients along the principal axes (the coordinate axes in the reference frame of D). Substituting
this into Eqn 27.10 gives

D̃ = û

t

D

⇤

û (27.15)

where

û = Rq̂ (27.16)

is the gradient direction vector rotated into the eigencoordinates of the di↵usion tensor. Eqn 28.3
and Eqn 27.15 are two equivalent but di↵erent representations that are useful intuitively. Eqn 28.3
shows that in the lab frame we apply the gradients along the direction q̂ and the resulting signal
decay depends upon the projection of the di↵usion tensor D, which is oriented in some arbitrary
direction, along that direction. Eqn 27.15, on the other hand, shows that in the reference frame
(i.e., eigencoordinates) of the di↵usion tensor, where it is diagonal, i.e. D

⇤

, the measured signal
is seen as being produced by the projection of D

⇤

along the direction u, the applied gradient q

rotated into the eigencoordinates of the di↵usion tensor. That is,

D̃ = û

t · D⇤ · û (27.17)

If the measurements are made along the principal axes, ie, in the coordinate system in which the
di↵usion tensor is diagonal, and the applied di↵usion encoding gradients û are in the direction
of the eigenvectors of D.
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where the eigenvalues are the principal di↵usivities {d
1

, d
2

, d
3

}. Generally, however, this principal
axis coordinate system is not known. The applied di↵usion encoding gradients v̂ are therefore
not coincident with the principal axis system, but are related to it by a rotation R:

û = R q̂ (27.19)

where v̂ is a unit vector in direction of di↵usion encoding. Thus, one usually wants to infer the
principal di↵usivities and the rotation R. From these can be determined the di↵usion properties,
such as the anisotropy, and the fiber directions. The rotation R is defined within the coordinate
system shown in Figure ??. The two angles that define the direction in this coordinate system
are the polar angle ✓ 2 [0, ⇡] which is defined as the angle between the vector and the positive
z-axis, and the azimuthal angle � 2 [0, 2⇡), which is defined as the angle in the x � y plane
relative to the positive x axis. It is also common to use the elevation angle � = 90� � ✓, which is
the angle between the vector and the x� y plane. This is often denoted by �, however (e.g. (?)).
We will retain the standard physics usage, depicted in Figure ??, where (✓,�) denote the polar
and azimuthal angles, respectively. It often useful to use the shorthand notation ⌦ ⌘ (✓, �). The
angles (✓,�) are two of the Euler angles used to described rotations in 3-dimensional coordinates
that we studied in Section ?? where there we called them by (↵, �, �) where ↵ is the azimuthal
rotation angle, � is the polar rotation angle, and � is a rotation about the new axis defined
by the rotation through (↵, �). For the description of a single point (i.e., a measurement) on a
sphere, as is the case in this paper, rotations about the final (radial) axis are unimportant, so
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the rotations can be described by the two angles (↵, �). It is common in this case to denote these
(✓,�).

The gradient direction vectors in the two coordinate systems are related by a rotation ((?))
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0

@
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1

A (27.20)

The apparent di↵usion coe�cient for an arbitrary gradient direction q̂ can thus be written
((?))

D̃ = q̂

t · D · q̂ (27.21)

where
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t
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R (27.22)

Eqn 27.22 defines the di↵usion tensor D in a rotated coordinate system. For any symmetric
matrix D, such as the di↵usion tensor, the product x

t

Dx is a pure quadratic form (?). The
rotation of the tensor relates the orientation of the fiber coordinate system relative to the lab-
oratory system wherein the eigenvalues determine the di↵usivities. Since D is positive definite,
it can be written in the form of Eqn 27.22 where D

⇤

is diagonal and the unit eigenvectors of D

are the columns of R. The rotation u = Rq̂ produces the sum of squares
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As we saw in Section 8.2, the equation q̂

t

Dq̂ = 1 describes an ellipsoid whose axes end at the
points where �

i

y2

i

= 1 and where the remaining y components are zero. Undoing the rotation,
these points are in the directions of the eigenvectors and the axes have half length 1/

p
�

i

. It is
important to emphasize, however, that the ellipsoid that describes the eigenspace of the di↵usion
tensor is not a description of the shape of the measured local di↵usion (?). Of course, in an
experiment the eigenvalues and the angles that determine the tensor orientation are not known,
and are, in fact, what we want to determine. How to do that is the subject of the next chapter.
But now let’s turn to the question of the “shape” of di↵usion.

27.4 The Shape of Di↵usion

Let’s return to the signal Eqn 27.9 where b is given by Eqn 27.10 and D̃ is given by Eqn 27.10
and u is the measurement direction 1. And for clarify we will assume here that there is no noise,
⌘(q) = 0. The geometry of D̃ is illustrated in Figure 27.2. and we see the importance of D̃: it
is the projection of the di↵usion ellipsoid onto the di↵usion sensitized direction u. Therefore the
measured signal is the projection of the di↵usion weighted signal along u. Since the elements of
the di↵usion tensor are the covariances of the 3D gaussian distribution, we see that

The measured di↵usion coe�cient along an arbitrary direction is proportional to the variance of the
projection of the spin displacement onto the measurement axis.

1 Get the hat’s straight! Either make the unit vector u or û - you have both now!
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projection of an ellipsoid!
not like projection of a vector
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Figure 27.2 The geometry of D̃.

Let’s look at the sampling vector in the 2D case first.

u = Rv (27.24)

where
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✓
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sin ✓ cos ✓

◆
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✓
1
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◆
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sin ✓

◆
(27.25)

Sampling at equally spaced angular increments would thus give sampling vectors as shown in
Figure 27.3. We can now construct D̃ using

u
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so that

D̃(✓) = u

t
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The measured signal is thus, from Eqn 27.28,
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Consider the case that the di↵usion is anisotropic and D
x

= 10D
y

. The signal for measurements
made at equilangular increments is shown in Figure 27.3a. The measured, or apparent di↵usion
coe�cient D

app

, found by solving Eqn 27.28 for D (we’re ignoring noise!), is given by
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and this is shown in Figure 27.3b.
This can be extended to 3D by exactly the same steps we just followed, except using the

3D rotation matrices, as shown in Figure 27.4. The shape depends on the ratio of the di↵usion
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along the di↵erent directions. If none of the values are equal, the shape is no longer rotationally
symmetric about any of the principal axes, as shown in Figure 27.5. We have only consider here
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Figure 27.5 The shape of the apparent di↵usion coe�cient depends upon the values of the di↵usion
along the principal axes.
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Figure 27.6 Signal as a function of b for 3D Gaussian di↵usion. For a known D, the contours of
constant level, where the signal s(û, b) as a function of gradient direction (û, the angular component)
and b (the radial component) is e�1/2 its maximum value, is shown for three di↵erent b-values
b = {1000, 2000, 3000} for � = {.001, .002, .003}.

the angular variations, for a constant b-value. For multiple b-values, the magnitude of the signal
changes, but the shapes do not as shown in Eqn 27.6
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