Lecture 6
Magnetic Resonance Imaging:
Image Formation 11

Relaxation Contrast,
Fast imaging, and Artifacts



Lecture Summary

1. The NMR signal
2. The NMR 1mage

3.Review of imaging
4. Creating relaxation contrast
5. Snapshot (EPI, spiral) imaging

6. Image artifacts



The NMR signal

s(k) = /QmL(:c,t)e_ik'“’ dx

The signal 1s the Fourter Transform
of the transverse magnetization

For static tissue (and perfect scanner)

mL(a:,t) — mL(w)




The Image

signal s(k) = /mL (.’,E)e_ik'CB dax
(2

A 4

Inverse Fourter Transform

image m (x) = /S(k)eik'm dk



The NMR signal




The NMR image




The Inverse Fourier Transform
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Example: A sinusoidal grating
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Example: A sinusoidal grating
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Example: A sinusoidal grating
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Example: A box function grating
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Example: A box function grating
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The image

m (x) = / s(k)e™® dk




Spatial modulation of the phase




Slice selection
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Slice selection

RF width

sample




k-space trajectory




k-space trajectory




k-space trajectory




k-space trajectory
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Frequency encoding

ky = vGit = YGnAt



Frequency and phase encoding

Frequency encoding
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Phase encoding
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k-space trajectory
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k-space trajectory
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k-space trajectory
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<—ky%

k-space trajectory
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<—ky%

k-space trajectory
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<—ky%

k-space trajectory
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(—ky%

k-space trajectory

O O @ @ OO
O O @ @ OO
O O @ @ OO
O O @ @ OO
O O @ @ OO
O O @ @ OO
O O @ @ OO
O O @ @ OO
O O @ @ OO
O O @ @ OO
O O @ @ OO
O O @ @ OO

— k, —

“ . )
Frequency encoding

“Phase encoding”
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k-space trajectory
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Frequency encoding

“Phase encoding”



k-space trajectory

Read gradient

Phase encode gradient




ypin echo sequence
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MR image data

IET

“Fourier’ data



The NMR signal

s(k) = /QmL(:c,t)e_ik'“’ dx

The signal 1s the Fourter Transform
of the transverse magnetization

For static tissue (and perfect scanner)

mL(a:,t) — mL(w)




MRI data and image

signal s(k) = /mL (.’,E)e_ik'CB dax
(2

A 4

Inverse Fourter Transform

image m (x) = /S(k)eik'm dk



Anatomy of k-space

low frequency high frequency full bandwidth




Resolution

T

0xr =

kmaa:

highest spatial frequency

determines how well objects can be resolved



Field of view

FOV = ~—
OV = "=

Lowest spatial frequency determines extent of image
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Phase encoding
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Signal (% of M)
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Spin Echo Contrast
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Spin Echo Contrast

Poor SNR/CNR T, —weighted




Spin Echo Contrast

Tl-weighted density weighted  T2-weighted



Relaxation Contrast

short TE 1ong TE

The MR signal depends on the local relaxation time (T2) and the
delay (TE) between excitation and data collection



Mapping relaxation rates directly
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Saturation Recovery
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Inversion Recovery Sequence
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Inversion Recovery Sequence
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Signal-to-Noise (SNR)

SNR < VVT

V = voxel volume
T = total acquisition time
T = (#averages) x (#phase encoding steps) x

(data acquisition time )



Bandwidth and SNR
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Gradient echo imaging

max signal at Ernst angle:

COS @ = e_Tr/Tl

1. Maximum signal at Ernst angle

2. Contrast mediated by flip angle

3. Ernst angle 1s where spoiled and non-spoiled
signal curves intersect

4. Ernst angle near point of maximum contrast
5. Below Ernst angle, both spoiled and non-
spoiled sequences are relatively insensitive to

T1, making them proton density weighted



ip angle dependence

Gradient echo {l




spin echo sequence
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data acquisition







Echo Planar Imaging (EPI)

MP-RAGE EPI

Voxel volume: 1 mm?3 Voxel volume: 45 mm3

Imaging time: 6 min Imaging time: 60 msec



signal

EPI Bandwidths
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EPI Bandwidths
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EPI Bandwidths
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Static Field Inhomogeneity and EPI
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Frequency encoding direction




Static Field Inhomogeneity and EPI

Frequency encoding direction

Phase encoding direction




Signal dropout

volume acquisition EPI acquisition









Multi-shot acquisition

Increasing the number of
shots per image
decreases the EPI| echo-
train length per shot.

SE-EPI

Shots :1-8

TR : 3000ms
TE : 60ms

Slice : d5mm/2.5mm (18)
Matrix : 256 x 256

FOV : 24cm x 24cm
Time : 12s8-27s

NEX - 1




Aliasing

bandwidth of object > receiver bandwidth



Aliasing

Fourier representation: periodically repeating




Nyquist ghosts
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phase encoding direction
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Nyquist ghosts
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Nyquist ghosts




Nyquist ghosts
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EPI N/2 ghost




EPI signal dropout




Receiver bandwidth

time between data samples:

At = 8us

sampling rate:

1 1
— = —— ~ 128kH 2
At 8us

This 1s the receiver bandwidth

[t 256 points are collected
total acquisition time 1s 512 x 8us = 4mwo



Image bandwidth

For a read gradient G, = .3G /em

creates a modulate across the image of

vGLoFOV = 4258H z/G x .3G/em X 24em ~ 32k H z

This 1s the unage bandwidth



Bandwidth-per-pixel

Two spins on opposite sides of the image have
precessional rates that differ by 32k H 2

Fach of the 256 voxels differ in precessional rate

from 1ts neighbor by 32kHz/256 = 125Hz~

This 1s the bandwidth-per-pixel



Chemical Shift Artifact

Fat and water have ditferent resonance (LLarmor) frequencies

by approximately 3.5ppm (parts-per-million)
3.5 x 10° x 42.6 MHz/T ~ 150Hz2/T

So at 3T:

3T x 150Hz/T = 450H 2



Chemical Shift Artifact

Aw

Aw ~440H z @Q 3T



The uses of chemical shift

In phase Out of phase
(TE = 3.9 ms) (TE = 7.0 ms)



Chemical Shift Artifact

Fat 1s shifted relative to water 1n the read direction

frequency difference

bandwidth-per-pixel

at 3T for 24cm FOV and 256 pixels:

5 450 Hz

Ar = —
‘ 125 Hz

3.6 pixels



Chemical Shift Artifact

Particular bad in EPI which has a very low
bandwidth-per-pixel in the phase encoding direction
since time between samples 1s much longer in that direction

Typically around
15 Hz/pixel

So shift 1s
450H z /(15 H z /pixel) = 30 pixels



Chemical shift artifacts in EPI

Fat signal




Fat Suppression

excite then “crush”
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Aw ~440H z @Q 3T



Fat Suppression




Chemical shift artifacts

Fat saturation off Fat saturation on

EPI acquisition






Spiral Imaging

1.Spiral trajectory less sensitive to motion

2.Artifacts tend to “smear” along trajectory and thus
blur rather than alias as in EPI

3.Image reconstruction requires regridding to Cartesian

grid for Fast Fourier Transtorm (FFT)



Spiral Imaging




