
14 The Classical Description of NMR

14.1 Introduction

In the previous section we showed how the mysterious quantum mechanical property of spin
possessed by the hydrogen nuclei (e.g., protons) in tissue water resulted in a macroscopic net
or bulk magnetization M that is small but measureable when a large number of spins were
placed in a large, static magnetic field B

o

. This magnetization points in the same direction as
B

o

, which is usually defined to be the ẑ direction, and there is no component in the x� y plane,
because these “transverse” components of the many spins point in random directions, and thus
average to zero. Moreover, the way this magnetization interacts with an arbitrary, time-varying
external magnetic field B(t), its so-called equation of motion, can be described in completely
classical terms, i.e., one need not know quantum mechanics. The equation of motion for the
magnetization is the simple equation

dM

dt
= �M ⇥B (14.1)

where ⇥ is the cross product discussed in Section 3.14. From our discussion of the cross product
in Section ??, we can write this in the form of a matrix equation (dropping the explicit time
dependence for simplicity):
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It will be helpful to recall that the matrix form of the cross product is formed from the dot
product of B with the component matrices Eqns ??- ?? (called the infinitesimal generators)
representing the cross product:

⌦ = �B
x

A
x

+ �B
y

A
y

+ �B
z

A
z

(14.4)

This expression is very useful for investigating di↵erent components of the applied magnetic
fields.

In addition to the motion of the magnetization due to the applied magnetic fields, we also saw
that the order caused by the immersion of the spins in a large static field becomes disordered
over time, in a process called relaxation. The spins interact with their environment so that the
longitudinal component of magnetization comes to equilibrium through an exponential process
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governed by the time constant T1. The spins interact with each other, causing an exponential
decay in the coherence of the transverse magnetization through an exponential process governed
by the time constant T2. The key equation for bulk measurements in NMR is thus the equation
that combines the motion of the bulk magnetization in the presence of external magnetic fields
(Eqn 14.1) with the process of relaxation. What we will show momentarily is that relaxation
e↵ects are very easily incorporated into Eqn 14.2 by the addition of the product of another
simple matrix, the relaxation rate matrix R, with M :

dM

dt
= ⌦M +RM (14.5)

where
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This nomenclature rate derives from the fact that the inverse of the relaxation times, {R1, R2} ⌘
{1/T1, 1/T2}, are called relaxation rates . Now we only have one more thing to do to make Eqn 14.5
a legitimate equation describing the magnetization. Imagine that we turn o↵ the external fields
(i.e., ⌦ = 0) and let the sample sit in the magnet. Eventually, it will come to equilibrium with the
main field, meaning it will stop changing with time: dM/dt = 0 and will have some equilibrium
value which we will call M

eq

. We thus see that for Eqn 14.5 to be physically accurate, it must
incorporate this boundary condition by the addition of an additional term:

dM

dt
+ [⌦+R]M = W Bloch Equation (14.7)

where W = RM
eq

. With the standard convention that the main field is aligned along the ẑ

axis, the equilibrium magnetization is

M
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The magnetization is aligned along ẑ and there is no net transverse magnetization.
Eqn 14.7 is called the Bloch Equation (?). It tells us how the magnetization M(t) evolves in

time in the presence of an applied magnetic field B(t) and relaxation time constants T1 and T2.
Solving the Bloch equation for a given field B(t) tells us M(t), that is, how the magnetization
evolves with time. This equation is central to MRI and understanding it is critical to getting
a grasp of basic imaging strategies. In what follows, we will break it down in such a way to
highlight some key features, eliminate its mystery, and show how some of the important features
of constrast in MRI can be understood, before we ever get to imaging!

14.2 Free Precession

Let us first consider the case in which spins are immersed in only the large static field B
z

= B
o

ẑ.
Let us also neglect relaxation, which means that we assume {T1, T2} = {1,1}. The Bloch
equation Eqn 14.7 simplifies to

dM

dt
= ⌦0M (14.9)
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and
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is called the Larmor frequency . In component form this is simply
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Writing out the components this is
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Taking a hint from our discussion of complex numbers (Chapter 4) and defining the transverse

magnetization 1

M
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(14.14)

we can write Eqn 14.13 as a single complex equation:
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which can be easily solved:
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Eqn 14.16 says that the transverse magnetization precesses about the ẑ axis with frequency !
o

.
This is shown in Figure 14.1. It is just the macroscopic equivalent of the results of Section 13.4.
Please keep in mind that we are referring to the bulk magnetization here. As discussed in Chap-
ter 13, the individual spins are always precessing in the static magnetic field.

This simplest of situations (we’ve only put a sample in the main field, and nothing else!) has
led us to two very important concepts. The first is that there is an advantage to describing the
magnetization in terms of transverse and longitudinal components {M

x

+ iM
y

,M
z

}, rather than
three cartesian components {M

x

,M
y

,M
z

}, and that the complex representation facilitated this
description. In a later discussion, we will extend this complex representation to the general Bloch
equation.

The second concept is implicit in the description of Eqn 14.16 of the motion of the magneti-
zation in the main field as a vector rotating at the Larmor (angular) frequency !

o

, which brings
us to the concept of the rotating frame of reference.
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Figure 14.1 Free precession of the magnetization about the main field.

14.3 The rotating frame of reference

The main magnetic field B0 = B0ẑ is always on and so the precession described in the last
section is always occurring and will be so during whatever other complicated manipulations of
the fields we perform. 2 In other words, our experiments can be thought of as taking place in a
reference frame that rotates at the Larmor frequency, which we discussed in Section ??. For the
most part MRI experiments are thought of in this frame and their mathematical description is
greatly simplified by transforming to this frame.
But we have actually already seen this exact problem in Section 6.12 and know the answer

(Eqn 6.61):
✓
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where ⌦
r

is the reference ⌦ derived from the magnetic fields what we want to constitute our
reference frame. Transforming the general form of the Bloch equations Eqn 14.5 to any reference
frame using Eqn 14.17 gives
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= (⌦+⌦
r

)M +RM (14.18)

which is equivalent to the Bloch equation for an e↵ective magnetic field B
e

seen by the magne-
tization in the new reference frame

B
e

= ⌦
e

/� = (⌦+⌦
r

)/� (14.19)

That is, in the rotating frame, the magnetization precesses about the e↵ective field B
e

. For ex-
ample, in the previous example of free precession, if we choose the reference frame as

⌦
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A (14.20)

2 It is worth recalling at this point that this frequency depends upon the gyromagnetic ratio �, and so is
dependent upon the chemical species. But for MRI we are almost always talking about a single species -
water, and so a single �.
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Figure 14.2 The rotating frame (blue) rotates at angular frequency !0 relative to the laboratory frame
(black) about the ẑ-axis defined by the direction of the main (static) field B

z

= B

o

ẑ. (direction of

rotation?)

and neglect relaxation (R = 0), on the grounds that the relaxation time are much longer than
the pulse duration (⌧ ⌧ T1, T2), we see that

✓
dM

dt

◆

rot

= 0 (14.21)

which says that the magnetization vector in this frame sees no e↵ective field, and thus is station-
ary (i.e., does not change with time) in the rotating frame for free precession in the absence of
relaxation. This particular rotating frame is called the Larmor rotating frame because its angular
frequency is the Larmor frequency. This frame has particular significance in MRI because it is
the frame associated with the main (static) field B0, which is always on. Using this frame in
calculations thus allows us to ignore the e↵ects of the main field, which greatly simplifies the
equations. The laboratory and rotating frames are shown in Figure 14.2. We can transform the
general form of the Bloch equations Eqn 14.5 to this reference frame using Eqn 14.17:
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rot
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)M +RM (14.22)

It is this form of the Bloch equations that is most often used in the description of MRI.

A comment on notation is worth mentioning here. It is common in the literature to describe the
lab coordinates with the Cartesian axes {x, y, z} and those in the rotating system as {x0, y0, z0}.
This is useful in an initial discussion of the rotating frame. But in MRI we are almost always
working in the rotating frame, since the subject is always in a large static field B

o

ẑ. So the
“primed” notation used to distinguish the lab frame axis x from the rotating frame axis x0

would require that we carry around those primes everywhere. Since we will be working almost
exclusively in the rotating frame, however, we follow the convention of dropping the primes and
adopting the implicit assumption that we are working in the rotating frame unless otherwise
specified.
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Problems

14.1 In what way is the e↵ective field in the rotating frame analogous to the Coriolis e↵ect that
causes large scale storm systems to veer to the right in the Northern Hemisphere?

14.4 The Bloch Equations in Complex Form: The Axial Representation

The transverse components of the magnetization {m
x

,m
y

} and the longitudinal component m
z

clearly have di↵erent status experimentally. The transverse components are detected by the coil,
and decay according to T2, whereas the longitudinal component is not detected and recovers
with T1. Now, we have seen that the motion of the magnetization vector in the static field is
a precession about ẑ, and we also know from our discussion of complex numbers (Chapter 4)
that rotations in a plane are succinctly described by writing the two coordinates {x, y} as a
single complex coordinate x + iy. Therefore describing the magnetization explicitly in terms of
transverse and longitudinal components is a very useful representation. This is called the axial

representation:
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which now represents the magnetization in terms of the longitudinal component M
z

and two
components in the transverse plane, one rotating counter-clockwise M+

xy

⌘ M
x

+ iM
y

, and
one rotating clockwise M�

xy

⌘ M
x

� iM
y

= M+⇤
xy

. Note that this representation involves two

transverse components that are complex conjugates (Chapter 4) of one another: M+
xy

= M�⇤
xy

,
and thus represent transverse components rotating in opposite directions 3. The significance of
this will be evident in our discussion of coherence pathways in Chapter 21: they allow us to
represent magnetization components both coming into phase and going out of phase with RF
pulses.

The transformation from the Cartesian to the axial representation is achieved with the matrix
(?)

P =

0

@
1 i 0
1 �i 0
0 0 1

1

A (14.24)

So that

M
axial

= PM
Cartesian

(14.25a)

⌦
axial

= P⌦
Cartesian

P�1 (14.25b)

where we have used the transformation rules of Chapter ??: the vector M is transformed by
the dot product with P while the frequency matrix ⌦ requires a similarity transformation (Sec-
tion ??).

3 Sometimes these are written M? = M
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y

and Mk = M

z
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Now, all we have done is change our representation of the magnetization. But as before, we
still want to describe the e↵ect of an RF pulse on the magnetization vector. However, since we’ve
changed representation of the magnetization vector, we’ll need to change our representation of
the RF pulses so that in either representation the resulting magnetization vector does the same
thing for the same pulse. This means that we need to figure out how to represent rotations
in the axial representation. But note that the axial representation is somewhat strange in that
the three orthogonal Cartesian axes {x, y, z}, have been combined into a plane (x and y), and
the z-axis orthogonal to the x � y plane. So, in some sense we have taken a 3-dimensional
representation and transformed it into a 2-dimensional representation. In Eqn 21.2 we saw that
the Cartesian coordinate system, rotations were described in terms of our familiar 3D cartesian
rotation matrices R

c

discussed in Section ??. But finding the equivalent rotation in the axial
representation turns out to be a non-trivial exercise. To see why, intuitively, this might be the
case, consider the two major di↵erences between the Cartesian and the axial representations: 1)
The Cartesian has real components while the axial has complex components; 2) The Cartesian
involved three dimensions while the axial has two dimensions. The first point is clear, but the
second is more subtle: the magnetization vector is still moving in the 3-dimensional space of
magnetization, but its representation involves only two dimensions: the longitudinal axis and the
transverse plane.
Therefore, the task is to find the 3 ⇥ 3 rotation matrix R

a

in the axial representation that
converts the magnetization, in the axial representation, just before the pulse M�

a

to the magne-
tization immediately following the pulse M+

a

:

M+
a

= R
a

M�
a

(14.26)

We’ll drop the subscript a in what follows.
Consider a magnetization vector M pointing in an arbitrary direction described in terms of

the spherical polar coordinates: the polar angle is ✓, the azimuth angle is ', and the radius
r = M ⌘ kMk, which we will consider to be constant for now. It remains on the surface of what
is called the Bloch sphere. 4
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Each such magnetization can be associated with a spinor

 =

✓
u

v

◆
=

✓
M1/2 cos(✓/2) e�i'/2

M1/2 sin(✓/2) ei'/2

◆
(14.28)

Thus the rotation of the 3-dimensional magnetization vector fromM� toM+ by the 3-dimensional
rotation matrix R (Eqn 14.26) is now represented by a 2-dimensional complex unitary transfor-
mation of  :

 + = U � (14.29)

where U is a unitary matrix given in its general form by Eqn ??.

4 Put a figure here!
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14.5 General Solution of the Bloch Equation

For B1 ⌧ B0, the solution to Eqn 14.7 can be found using the Caley-Hamilton theorem (?):

M(t) = F (t) [M(0)�M
eq

] +M
eq

(14.30)

where M(0) is the initial magnetization, M
eq

= M(t ! 1) is the equilibrium magnetization,
given by

M
eq

=
�
T�1 +⌦

��1
W (14.31)

and F (t) is the function that takes, or propagates, the magnetization from its value at one time
to a subsequent time, and is called the propagator :

F (t) = exp
⇥
�(T�1 +⌦)t

⇤
(14.32)

The F (t) defines the incremental e↵ect of the field on the magnetization vector. That is, the
magnetization after a short time interval ⌧ is related to the magnetization at the initial time t

by

M(t+ ⌧) = F (⌧)M(t) (14.33)

The matrix approach is a concise method that has found utility in a number of applications,
including the analysis of excitation (?).

Problems

14.2 Prove Eqn 14.31.

14.6 Coils: Creation and Detection of Magnetic Fields

We now are at an important conceptual juncture. Up to this point, we have been making the dis-
tinction between the component in the longitudinal (ẑ) direction, and the component in the x�y

plane (the transverse component). And there is a very important reason for this that we shall
see in the next sections: Only the transverse component is what is “seen” (i.e., measured) by our
detection equipment, whereas the longitudinal component is not. Later on, we will also see that
two components change their magnitude, or relax, with di↵erent rates. These facts bring up three
important issues. The first is: 1) “How do we create transverse magnetization?”, since this is what
we need to do to measure the signal. The second is: 2) “How do we detect transverse magneti-
zation?”. In other words, what is the actual mechanism by which we can make measurements of
the magnetization? And thirdly, 3) Is there an e�cient way to describe the two components that
exist in the three dimensional space of m(t)? That is, even though we could describe the mag-
netization in terms of it three Cartesian components m(t) = {m

x

(t),m
y

(t),m
z

(t)}, it is clear
that there are really just two vectors in which we are interested: the longitudinal component
mk(t) ⌘ m

z

(t) and the transverse component the m?(t) ⌘ m
xy

(t).
The first two of these are discussed in the next two sections, and will bring us into the area of

physics concerned with electric and magnetic fields, or electromagnetism. Our discussion on this
topic will be brief (for further reading, an excellent introductory text is (?)), but it is important
to at least grasp the basic ideas since all of MRI is based upon the generation and detection of
signals using loops of wires called coils.
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(a) A straight wire. (b) A loop of wire. (c) A solenoid.

Figure 14.3 According to Biot-Savart’s Law, a steady current ~i through a wire creates a magnetic field
the is perpendicular to the direction of the current. (a) A straight wire. (b) A loop of wire. The arrow
(cyan) represent the net field at the center of the loop. (c) A solenoid. The arrow (cyan) represent the
net field at the center of the loop. (Need better depiction of fields here.)

14.7 Creating a magnetic field: The Biot-Savart Law

The previous sections beg the question “How do you create a static magnetic field?”. To answer
this, we will see one of the fascinating aspects of physics that actually enters into everyday life.
It pertains to the relationship between magnetic fields and electrical currents, this time in a form
of Ampere’s Law , which describes the magnetic field generated by a current running through a
closed loop of wire. For a steady current I along a very small length of wire dl, the di↵erential
contribution dB to the magnetic field at some distance r is found from Biot-Savart’s Law . This
is shown in Figure 14.3a. A loop of wire creates the pattern shown in Figure 14.3b. Therefore,
by looping a wires around in a helical pattern, called a solenoid , and running a current through
it, one can create a constant magnetic field pointing along the axis of the helix, as shown in
Figure 14.3c.

dB =
⇣µ

o

4⇡

⌘ Idl⇥ r̂

r2
(14.34)

where r̂ is a unit vector from the wire along the radius of interest. µ
o

is the magnetic constant
5. This is how the main magnetic field is constructed, in fact, as shown in Figure 14.4. As you
might imagine, other patterns of magnetic fields can be created with di↵erent patterns of wires
(?).

14.8 Detecting a signal: Faraday’s Law of Induction

We have found that if the bulk magnetization is not parallel to the main field B
o

⌘ B
o

ẑ, then
it will precess about the axis along which B

o

is aligned, i.e., the z axis. In order to detect this,
we will once again use the relationship between magnetic fields and electrical currents, but in
a di↵erent form from the last section. We will use the fact that a magnetic field changing with

5 put its value
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Figure 14.4 The main field of an MRI scanner is created by a solenoid. (diagram from
http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/)

time generates a current in a surrounding wire. In physics terms, this is stated in the following
way: A time rate of change of the magnetic flux �

B

through a closed circuit generates a voltage
V (t) according to Faraday’s Law of Induction:

V (t) = �d�
B

dt
(14.35)

For a magnetic field B(r) in the laboratory frame, the flux generated by the precessing bulk
magnetization M(r, t) is

�
B

=

Z

⌦
B(r) ·M(r, t) dr (14.36)

and the integral is over the object dimensions ⌦.

Therefore we see the important fact that we can detect a changing (i.e., precessing) magnetiza-
tion by the voltage that it induces in a coil, but that this necessitates having the magnetization
pointing along a direction other than that which it is naturally aligned: We are detecting the
magnetization in the plane perpendicular to ẑ. That is, it is the transverse magnetization m?
that is detected, while the longitudinal component mk, does not precess about ẑ and thus does
not induce a voltage. This is shown in Figure 14.5.

A magnetization that precesses in a plane perpendicular to the plane of the coil thus generates
an oscillating field, as shown in Figure 14.7a. The result of this is that a precessing magnetiza-
tion will induce a signal in a coil that is at any orientation other then in the same plane of the
precession, as shown in Eqn 14.7b. We see then that it is necessary to move, or tip, the magne-
tization vector m to a direction other than the direction of the main field if we are to detect a
magnetization. This is called excitation, and in the next section we see how to accomplish this.
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(a) ↵ = 90� (b) ↵ = 45� (c) ↵ = 0�

Figure 14.5 Detecting a magnetic field and Faraday’s Law. The cyan vector is the total magnetization
m, moving in a circle and at an instantaneous angle ↵

� relative to the plan of the loop (shown in (b)).
The green arrow is the component of m? perpendicular to the coil loop, and the red arrow is the
component mk in the plane of the coil loop. The green component generates a current in the loop,
which is what we detect.

(a) Rotating magnetization. (b) Corresponding signal.

Figure 14.6 Detecting a magnetic field and Faraday’s Law. A magnetization vector moving in a plane
perpendicular to the loop (a) generates a sinusoidally varying current (b) as it goes from being in the
plane of the loop (red) to out of the plane of the loop (green). The magnetization vector and the
corresponding signal are colored according to how much of it is in the plane (red) and how much is out
of the plane (green).

14.9 Excitation

In the previous section we saw that the component of magnetization that is ”seen” by the coils is
the transverse component m

xy

, whereas the magnetization in its equilibrium state in the static
magnetic field is aligned along the ẑ-axis, and thus, if we just let it sit in that field, would
be composed of only the longitudinal component m

z

. So in order to detect the magnetization
we need to find a way to tip the magnetization vector into the transverse plane. This is called
excitation.

Understanding how to tip over the magnetization is conceptually very simple if you recall our
discussion of torque in Section 3.14. Recall our mechanical example of a wrench represented by
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(a) A magnetization vector moving in the
x�y plane and three orthogonal coils per-
pendicular to each of the three Cartesian
axes {x, y, z}.

(b) The induced voltage in the three coils
{x, y, z} from top to bottom.

Figure 14.7 A magnetization vector moving in the x� y plane generates signals in the coils
perpendicular to x and y, which are 90� out of phase with one another, and no signal in the coils
perpendicular to z, which is in the same plane as the rotating magnetization vector.

a vector r (the moment arm) initially pointing along the ẑ direction. If we pull it down along
the x̂-axis with force F , the torque ⌧ on the moment arm is

⌧ = r ⇥ F = rF (ẑ ⇥ x̂) = rF sin ✓ ŷ (14.37)

where r = |r|, F = |F | and ✓ is the angle between r and F . If the force is applied perpendicular
to the moment arm ✓ = 90� ! sin ✓ = 1 and the torque then ⌧ = rF ŷ. The moment arm is thus
tipped from the longitudinal (ẑ) direction to the transverse plane, in this case specifically onto
the ŷ-axis. But notice that Eqn 14.2 is just such an equation, with the magnetic field B applying
a torque ⌧ = dM/dt on the magnetization vector M . We can immediately conclude, by analogy,
that if we apply a magnetic field B1(t) perpendicular to the magnetization vector (say, along
the x̂ direction) we can rotate it from the longitudinal direction to the transverse plane, onto
the ŷ axis. But there is a complication - the magnetization vector is precessing at the Larmor
frequency !0 so applying the field B1 along the x-axis of the magnet (the laboratory frame)
would mean that the angle ✓ in Eqn 14.37 was constantly changing. It would be like trying to
tighten the bolt on a rotating piece of equipment. But the solution to this is easy: If you want to
tighten a bolt on a horse on a moving Merry-Go-Round, you don’t do it from the ground outside
it, you hop onto the Merry-Go-Round. Once you are in the rotating reference frame of the horse,
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the problem becomes easy. So that’s the answer - we need to apply the magnetic field B1 in the
Larmor rotating frame.
Technically, it is not a problem to apply a magnetic field that rotates at some angular frequency

⌦1. The field we want to create rotates in both the ẑ (the direction of the rotating frame) and
the x̂ (the direction we want to tip the magnetization onto the ŷ axis). Using Eqn 14.4,

⌦1 = �B1,xAx

+ �B1,zAz

=

0

@
0 �!1,z 0
!1,z 0 �!1,x

0 !1,x 0

1

A (14.38)

From Eqn 14.22 the Bloch equations in the Larmor rotating frame are
✓
dM

dt

◆
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= (⌦1 �⌦
o

)M +RM (14.39)

where, from Eqn 14.20 and Eqn 14.38
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From this it is clear that if we set the angular frequency in ẑ to the Larmor frequency, !1,z = !
o

and set the angular frequency along x̂ to !1,x = �B1x̂ where B1 is a constant, then

⌦rf ⌘ ⌦1 �⌦
o
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@
0 0 0
0 0 ��B1

0 �B1 0

1

A (14.41)

Because the applied field B1(t) rotates about ẑ at the Larmor frequency, which for MRI is in
the radio-frequency or RF range of frequencies (⇡ 30Khz � 300Ghz), this pulse is typically
referred to as the RF-pulse and the frequency designated with a subscript ”rf”, as we’ve done
in Eqn 14.41. Thus, spins are tipped when one applies a field in the lab frame that rotates at
the Larmor frequency. This condition is called resonance and so this type of excitation is called
on-resonance excitation. Because this involves the magnetic moment of the nucleus (protons),
this type of resonance is called nuclear magnetic resonance, or NMR.

The tipping of the magnetization in the two frames is illustrated in Figure 14.8. The tipping
of the magnetization occurs during the application of the RF pulse B1(t). The degree to which
it is tipped is characterized by the size of the angle ↵, the flip angle, between the magnetization
vector and the ẑ axis. The flip angle depends on the length of time ⌧ the field is kept on, and
the field strength, B1 = |B1|:

↵ =

Z
⌧

0
!1(t) dt = �

Z
⌧

0
B1(t) dt (14.42)

For a pulse that is constant in the rotating frame

↵ = �B1

Z
⌧

0
dt = �B1⌧ (14.43)

Since the flip angle depends upon the time integral and the magnitude of the field, the value of
the flip angle can be altered either by changing the strength of the field B1(t) or its duration.
For example, for the special case of a constant B1 of fixed amplitude, doubling the time pulse
duration ⌧ produces a flip angle twice as big. An example of a 90� pulse is shown in Figure 14.9.
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(a) The torque ⌧ on m produced by B. (b) Trajectory of m under the influence of B.

Figure 14.8 To keep the B-field perpendicular to the precessing magnetization, it must rotate at the
same frequency. In (a) is shown the torque ⌧ on the magnetization m produced by the magnetic field
B. In (b) is shown the trajectory of the magnetization under the influence of B. At each time step the
magnetization m has precessed (i.e., rotated) relative to the previous time and so the magnetic field
B1 necessary to tip it to the transverse plane must also rotate in step. Magnetization is in cyan,
applied field is in blue, and torque is in orange.

Figure 14.9 A 90� pulse in the rotating frame.

In the laboratory frame, an RF pulse arbitrary of flip angle ↵ creates a transverse component of
the magnetization m

xy

, its projection onto the transverse plane, and a longitudinal component
m

z

, its projection onto the longitudinal axis. This is illustrated in Figure 14.10. It is worth
returning now briefly to that common area of confusion, brought up way back in Section 24.1,
concerning how one can possibly have a flip angle of arbitrary degree when spins can have only two
orientations, “up” and “down”. At this point it should be clear that there really is no problem
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Figure 14.10 Motion of the magnetization that is initially at an angle ↵ with the main field B
o

= B

o

ẑ.
In (a) is shown precession of the magnetization m (blue) about the static magnetic field B

o

(cyan).(This is in the reverse direction as TTL!). In (b) is shown longitudinal component m
z

of
the magnetization. In (c) is shown the transverse component m

xy

of the magnetization.

here at all. We long ago (Chapter 13) demonstrated that the collective behavior of the spins
system was su�ciently described by a classical magnetization vector whose motion is described
by the Bloch Equations and whose orientation can be altered by solving these equations in the
presence of external fields other than the main static field. The magnetization is simply a classical
vector that can be driven through any flip angle and take on any orientation.

14.10 The Magnetization Trajectory

A useful device for investigating the influence of an RF pulse on the magnetization is to plot
the path traced out by M(t), called the trajectory , as a function of time in the presence of the
applied field B1(t). This can be thought of as plotting the tip of the magnetization vector. A
useful device to visualize the trajectory is to plot it on the sphere whose radius is the length of
the (unrelaxed) magnetization vector. This is called the Bloch sphere. The magnetization can be
plotted in both the rotating frame and the laboratory frame, as is done Figure 14.11 for the case
of ↵ = 180�, where the magnetization vector is rotated from +ẑ to �ẑ. This is also called an
inversion pulse. To determine M(t), the Bloch equation needs to be solved. This is made much
easier if it is possible to apply the fields necessary for our manipulation of the magnetization
much more rapidly than the relaxation process. That is, if ⌧ is the time need to apply an external
excitation field, then ⌧ ⌧ T2 (and thus also T1 since T2 < T1) and the Bloch equation becomes

dM

dt
+⌦M = 0 (14.44)

which is easy to solve:

M(t) = M(0)e�⌦t (14.45)

6

6 Make connection here with infinitesimal rotations and rotation matrices!!
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(a) Path of the magnetization in the labora-
tory frame.

(b) Path of the magnetization in the rotating
frame.

Figure 14.11 The path of the magnetization for a 180� pulse in the laboratory and the rotating frame.

The general solution to the Bloch Equation in the rotation frame can then be written7

m
rot

(t) = R(↵)m(0) (14.46)

where ↵ is given by Eqn 14.42. The rotation can be applied about any arbitrary axis and from
our discussion of rotation matrices in Section ?? we know that we can rotate a vector about
any angle by a combination of rotations about the three Cartesian coordinate {x0, y0, z0} (here,
the rotating Cartesian coordinate of the rotating frame). These rotations are just our familiar
rotation matrices given in Eqn 6.10. In practice, the majority of RF pulses are applied along
one of the three orthogonal axes {x0, y0, z0}, which nicely simplifies the description of a series of
pulses in practical applications. For example, an RF pulse of angle ↵

x

along x, followed by a
pulse of angle ↵

y

along y, and then one of angle ↵
z

along z can be calculated simply as

m
rot

(t) = R
z

(↵
z

)R
y

(↵
y

)R
x

(↵
x

)m(0) (14.47)

From the discussion in Section ?? we know that the product of the three rotation matrices is a
single rotation. A pulse can also be applied with a phase angle � which is easily incorporated
into Eqn 14.47 by an addition rotation by � about ẑ.
Plotting the trajectory in the lab frame (e.g., Figure 14.11a) can be accomplished by solv-

ing the Bloch equations in the lab frame. The use of rotation matrices makes moving between
the lab frame and the rotating frame very easy. For a pulse of duration ⌧ , the rotating frame
magnetization can be expressed in terms of the lab frame as

m
rot

(t) = R(!
o

⌧)m
lab

(t) (14.48)

But now we can use the fact that rotation matrices are orthogonal matrices (Section 5.16), i.e.,
R�1R = I means that we can multiply Eqn 14.48 on the left by R�1 to get the transformation

7 The next step we haven’t shown - the rotation matrix solution for the general Bloch equation - i.e., for a
general B1 pulse!
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from rotating frame to lab frame:

m
lab

(t) = R(!
o

⌧)�1m
rot

(t) (14.49)

The use of rotation matrices to determine the trajectory of the magnetization under the influences
of multiple pulses is exceedingly useful, and made more so by the ability of modern computation
mathematics tools (e.g., Mathematica (?)) to symbolically accept such input and to e�ciently
calculate it numerically.

14.11 O↵-resonance excitation

In the previous section we saw that excitation can be achieved by applying a magnetic field
B1(t) with a component perpendicular to the ẑ-axis and rotating about the ẑ-axis at the Larmor
frequency. This was called on-resonance excitation. But what happens if a spin is not in a field
B

o

but one that is slightly di↵erent, B
o

+ �B? This situation is not uncommon: there are a
variety of conditions that will create a variation �B in the local magnetic field and result in
spins precessing at a rate !

o

+�! = �(B0 +�B). In this case, there is a mismatch between the
precessional frequency of the spins ! = !

o

+ �! and the angular frequency !
o

of the applied
field B1(t). Excitation in this case is called o↵-resonance excitation.
Again using Eqn 14.4, with Eqn 14.38 as before, we can define

�⌦ = ��B0,zAz

=

0

@
0 ��!0,z 0

�!0,z 0 0
0 0 0

1

A (14.50)

Assuming now that the ẑ component of ⌦1 is at the Larmor frequency, from Eqn 14.22 the Bloch
equations in the Larmor rotating frame are

✓
dM

dt

◆

rot

= (⌦1 +�⌦
o

)M +RM (14.51)

where, from Eqn 14.20 and Eqn 14.38

⌦1 +�⌦
o

=

0

@
0 ��!0 0

�!0 0 �!1,x

0 !1,x 0

1

A (14.52)

gain neglecting relaxation (R = 0), on the grounds that the relaxation times are much longer
than the pulse duration (⌧ ⌧ T1, T2).

14.12 O↵-resonance excitation (old)

In the previous section we found that for a group of spins at the frequency !
o

of the main
field, the resonance frequency was just !

o

= �B
o

. So that by setting ! = �!
o

ẑ0, the resonance
condition is achieved. But what happens if a spin is not in a field B

o

but one that is slightly
di↵erent, B

o

+ �B? In fact, this situation is not uncommon: there are a variety of conditions
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(a) O↵-resonance excitation
!1/�!

o

= 1/2.
(b) O↵-resonance excitation
!1/�!

o

= 1/4.
(c) O↵-resonance excitation
!1/�!

o

= 1/8.

Figure 14.12 O↵ resonance excitation.

that will create a variation in the local magnetic field. A spin in this field will precess at a rate
!
o

+�!. So in the rotating frame, what does this look like? From Eqn ?? with ! = !0ẑ
0

B
e

(t) =
�!

o

�
ẑ0 +B1(t)ŷ

0 (14.53)

This can be solved for a constant B1 applied for a time ⌧ 8

M
x

0(t) = Mo

z

sin ✓ cos ✓ (1� cos(!
e

t)) (14.54a)

M
y

0(t) = Mo

z

sin ✓ sin(!
e

t) (14.54b)

M
z

0(t) = Mo

z

�
cos2 ✓ + sin2 ✓ cos(!

e

t)
�

(14.54c)

The e↵ective field B
e

= !
e

/� where

!
e

=
q
�!2

o

+ !2
1 (14.55)

and is at an angle ✓ between the z0 axis and the axis along which B1 is oriented (here x0)

✓ = tan�1

✓
!1

�!
o

◆
(14.56)

The situation is shown in Figure 14.12. At then end of the pulse, i.e., at t = ⌧ , we replace !
o

t

with ↵, the flip angle, in Eqn 14.54 to get the final magnetization vector. From this we can
calculate the final magnitude and phase of the magnitization:

M? = Mo

z

sin ✓
q

sin2 ↵+ (1� cos↵)2 cos2 ✓ (14.57a)

' =
M

x

M
y

=
↵

2

�!
o

!
e

(14.57b)

The magnitude decreases as the frequency o↵set increase 9 whereas the phase shift increases with
the frequency shift �!

o

.

8 Gottfried gives a cleaner solution than Liang 3.107!
9 Show plot?
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Problems

14.3 Prove Eqn ??.

Problems

14.4 Prove Eqn 14.57

Problems

14.5 Prove Eqn 14.57

14.13 The NMR signal

Once we have created a transverse magnetization by excitation, this precessing magnetization
can be detected by the voltage that it induces in the coil. The form of this signal depends on the
specific details of the detection equipment (a good discussion of processing is given in (?)) but
for most MR scanners with a receiver that is homogeneous over the object, the detected signal
can be processed in such a way that we detect a signal

s(t) =

Z

⌦
m?(r, t)e

�i!(r,t) dr (14.58)

where r is the vector in 3-dimension Cartesian space, i.e., r = {x, y, z} and !(r, t) is the frequency
in the rotating frame. That is, the di↵erence between the frequency in the lab frame and the
resonance frequency:

!(r, t) = �

Z
t

0
B(r, ⌧) d⌧ (14.59)

Therefore we only need concern ourselves with deviations of the field from B
o

and of frequencies
from !

o

.10

Notice the very important fact expressed by Eqn 14.58:

The signal is the Fourier Transform of the transverse magnetization

(see Section ?? if you have forgotten the Fourier Transform.) This fact is central to so many as-
pects of MRI that its importance cannot be over-emphasized. In addition to providing the method
of reconstructing the images from the data, it also motivates the methods of data acquisition
and explains the structure of artifacts, among many other things.
In the last section we came upon two important characteristics of the signal that need to be

emphasized here. First, the signal is generated by the motion of the magnetization in the x� y

plane, the transverse component m?, but not the component along the z-axis, the longitudinal

component mk. This means that the natural way to described the magnetization is not in terms
of its three Cartesian components m = {m

x

,m
y

,m
z

} but in terms of its two components
m = {mk,m?}. Secondly, the component m? is just a vector in the x � y plane rotating
about the z-axis, and its x and y components are 90� out of phase. This suggests that a natural
representation of the transverse component is in terms of the complex numbers that we discussed
in Chapter 4. Recall from that discussion that this description is convenient because instead of
keeping track of two parameters (x and y), we need only keep track of one, the phase angle,

10 add argument from class slides.
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which then tells us what those two parameters must be. That is, in Figure ??, m
xy

= m
x

+ im
y

where the angle between m
xy

and the x-axis is � = tan�1(y/x) (see Eqn ??). This is also the
reason for the complex dependence on ! (i.e., e�i!) in Eqn 14.58.
Now, notice that the signal depends on the transverse magnetization, which is subject to T2

relaxation according to Eqn 13.36. Substituting this into Eqn 14.58, the signal equation becomes

s(t) =

Z

⌦
m?(r, 0)e

�t/T2e�i!(r,t) dr (14.60)

In summary, the motion of the magnetization and which of its component are detectable suggests
that a natural representation of the magnetization is in terms of two components, the longitudinal
component mk which is a real vector, and the transverse component m? = m

x

+ im
y

that is a
complex number. If it looks strange to have the magnetization expressed in terms of two di↵erent
types of vectors (one real, one complex), well, you’re right.
Eqn 14.60 says that the signal detected in the RF coils from the transverse magnetization of

the freely precessing spin (i.e., not in the presence of any excitation pulses, just the main field)
decays as the transverse magnetization is reduced by T2 e↵ects, and so is called the free induction

decay or FID and is shown in Figure 14.13 for a single isochromat. To summarize, immediately
following the termination of the excitation pulse:

1. Spins precess in the main field Free from excitation pulses

2. The precessing spin generates current in the RF coils by Faraday’s Law of Induction

3. This signal diminishes exponentially due to Decay of the transverse component of magneti-
zation.

14.14 Isochromats and T ⇤
2 relaxation

The main field precessional frequency is typically called the resonance frequency , since that is
the frequency at which an excitation pulse must be applied to resonate the spins. Ideally, all
spins in a the main magnetic field B

o

= B
o

ẑ would have the same resonance frequency, given by
the Larmor equations:

!
o

= �B
o

(14.61)

In practice, however, spins possess a range of resonance frequencies. There are two primary
reasons for this. First, the main field can be inhomogeneous. If this field deviates from the ideal
value of B

o

by an amount �B
o

, then the local precessional frequency will deviate by an amount
�!

o

= ��B
o

. And thus the actual resonance frequency will be

!
resonance

= !
o

+�!
o

= �(B
o

+�B
o

) (14.62)

The second reason for variations in resonance frequencies is that spins in an actual tissues are
part of complex molecular environments wherein the orbital electrons of the molecules produce
small magnetic fields that tend to be in the opposite direction of the applied fields11, and thus
the nucleus sees a field that is slightly less than the applied field. It is usually said that the
electrons “shield” the nucleus from the external field. This e↵ect is typically characterized by

11 explain more?
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(a) Transverse magnetization of spins contributing to the FID.

(b) Free induction decays for a single isochromat. Blue line is on-resonance, red line is
o↵-resonance

Figure 14.13 Decay of the transverse magnetization according to (Eqn 13.36) due to the dephasing
depicted in (a). This is called the free induction decay. For spins on-resonance, the curve is a simple
decay (blue) but for spin o↵-resonance the signal oscillates and decays. The envelope of the signal is
the on-resonance decay curve.

introducing the shielding constant � that is the strength of the o↵set field as a fraction of the
main field so the field the nucleus experience is expressed as

B
o,true

= B
o

� �B
o

= B
o

(1� �) (14.63)

and thus the resonance frequency is

!
o,true

= (1� �)!
o

(14.64)

Since there are variations in the resonance frequencies, a useful concept is that of a group of
spins with the same resonance frequency, which is called an isochromat .

In general, there can be many di↵erent frequencies within a small volume of tissue, so the
only practical way to characterize them is by their distribution. In this case Eqn 14.60 can be
rewritten in terms of the frequencies as

s(t) =

Z

⌦
m?(!, 0)e

�t/T2e�i!(r,t) d! (14.65)

A distribution of frequencies is called the spectrum of frequencies. The spectrum of frequencies
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is typically modeled as a Lorentzian distribution

f(!) = meq

z,n

(��B
o

)2

(��B
o

)2 + (! � !
o

)2
(14.66)

where meq

z,n

is the equilibrium bulk magnetization at frequency n. Substituting Eqn 14.66 into
Eqn 14.65 gives

s(t) =

Z

⌦
meq

z,n


(��B

o

)2

(��B
o

)2 + (! � !
o

)2

�
e�t/T2e�i!(r,t) d!

= ⇡(��B
o

)meq

z,n

e�t/T

⇤
2 e�i!

o

t (14.67)

where 12

1

T ⇤
2

=
1

T2
+ ��B

o

(14.68)

The decay of the transverse magnetization according to Eqn 13.36 and characterized by T2 is
an empirical model for the signal loss due to molecular processes, and is sometimes called the
natural decay process. The new decay constant T ⇤

2 (pronounced ”T2 star”) is shorter than (or
equal to) T2, which is always shorter than (or equal to) T1. That is,

T ⇤
2  T2  T1 (14.69)

The process of T ⇤
2 relaxation is shown in Figure 14.14 In subsequent chapters we will see that T ⇤

2

decay can be quite a problem in DTI, as it causes signal loss in regions of field inhomogeneities.
However, it can also be used to advantage in some applications, such as FMRI, where the pro-
motion of signal loss due to brain activity induced field inhomogeneities is actually desired to
enhance functional contrast.

14.15 Excitation (RF) Echoes

In the previous section we augmented our description of the motion of the magnetization with
the relaxation that results from the aggregated behavior of a large number of spins. In particular
we found that following excitation, by which we mean tipping the initial longitudinal magnetiza-
tion into the transverse plane, the transverse magnetization decayed away while the longitudinal
magnetization grew back. The e↵ects are summarized in Figure 13.9. However, we also found
that while the transverse magnetization decayed away with a “natural” time constant T2 (Fig-
ure 14.13b), in practice it often decays away more quickly, with a shorter time constant T ⇤

2 that
results from main field inhomogeneities (Figure 14.13a).
In this section we consider what happens when we add additional excitation, or RF, pulses

after the initial 90� excitation pulse. It turns out that while the natural T2 decay is an intrinsic
property of the tissue, the e↵ects that cause T ⇤

2 decay can be corrected for. With the addition
of just a single well-constructed RF pulse, we will see one of the most remarkable properties of
NMR experiment: the ability to recover “lost” signal by the process known as excitation echoes

or rf echoes.

12 next eqn missing a 1/2? Check!
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(a) Excitation pulse 90�
y

. (b) T

⇤
2 dephasing.

(c) The FID with T

⇤
2 included. T2 is irreversible intrinsic transverse decay. T ⇤

2 include
reversible decay due to field inhomogeneities.

Figure 14.14 T

⇤
2 dephasing.

14.15.1 The Spin Echo

Consider now a collection of spins at di↵erent resonance frequencies, i.e., several isochromats,
that are initially aligned along the main field ẑ, then excited with a 90�

y

excitation pulse so that
they are all aligned along the x-axis, as shown in Figure ??. After the excitation pulse is turned
o↵, the spins are allowed to undergo free precession for a time ⌧ . During this time, the spin precess
according to the local field they are in. Spins in di↵erent fields precess through di↵erent angles
' in the transverse plane during a time ⌧ : a spin at a higher field precesses faster, and thus goes
through a larger angle than a spin at a smaller field for the same time interval ⌧ . Plotting all spin
vectors together (although they inhabit di↵erent physical locations) the increasing phase accrual
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and discrepancy from one another is shown in Figure 14.15. At time ⌧ , a pulse that rotates the
spins 180� about the x-axis is applied, as shown in Figure ??. A spin that had accrued a phase
' is now made to have a phase of �'. It is still precessing in the same direction and at the
same rate, so after another time ⌧ later its phase exactly opposite that accrued during the first
interval, and so cancels exactly. This does not depend on the value of '.
The spin echo is shown in both the laboratory frame and the lab from in Eqn 14.15. It is

shown in these two frames because simple diagrams explaining the spin echo unnecessarily lead
to another one of the major sources of confusion for beginning students. The steps of the spin
echo are as follows.

1. First an excitation pulse tips the magnetization into the transverse plane, as shown in Fig-
ure ?? where a 90�

y

is used for excitation.

1. Consider the phases at t = ⌧ in the lab frame as shown in Figure 14.15d . The red spin
sees a slightly larger field B

o

+�B
o

and precesses faster than the blue spin, which sees a
slightly lower field B

o

��B
o

.

2. Consider the phases at t = ⌧ in the rotating frame as shown in Figure 14.15d. Red spin’s
phase !

o

+�!
o

is slightly larger than !
o

and so advances relative to on-resonance spins,
whereas the blue spin’s phase !

o

��!
o

is slight smaller than !
o

and so retreats relative
to on-resonance spins.

2. After a time interval ⌧ , a 180�
x

is applied.

1. Refocussing pulse 180�
x

in the lab frame (Figure 14.15b)

2. Refocussing pulse 180�
x

in the rotating frame (Figure 14.15e).

3. We wait a time ⌧ after the 180�
x

.

1. Phases at t = ⌧ in the lab frame immediately following the 180� pulse (assumed to take no
time to apply) shown in (Figure 14.15b) . Spins are always precessing in the same direction.
But the spins’ phases go from ' to �' so the larger red spin phase means that it is flipped
to a larger negative phase, and is thus farther away from the x-axis than the blue spin.
The red spin has farther to go, but it is precessing faster.

2. Phases at t = ⌧ in the rotating frame immediately following the 180� pulse (assumed to
take no time to apply) shown in (Figure 14.15e). The spins are always precessing in the
same direction but in the rotating frame the blue and red arrow refer to the di↵erence in
phase from !

o

t. Therefore the red spin appears to advance while the blue spin recedes.

4. At a time 2⌧ after the excitation, a spin echo occurs.

1. Phases at t = 2⌧ in the lab frame (Figure 14.15c). Both spins come into alignment with
the on-resonance rotating vector.

2. Phases at t = 2⌧ in the rotating frame (Figure 14.15f). Phases at t = 2⌧ in the rotating
frame. Both spins come into alignment with x’-axis.

Therefore, at the end of the sequence of pulses,

90� � ⌧ � 180� � ⌧ � echo (14.70)

at the time 2⌧ , all of the spins come into phase, or refocus. For this reason, the 180�
x

pulse is called
a refocussing pulse. The spins coming into phase is called a spin coherence because it results in
the spins’ signals adding coherently, forming a net signal that is called a spin echo. This e↵ect
was discovered by Erwin Hahn (?), one of the early pioneers of NMR, and so is also called a
Hahn echo. If the initial magnetization was M

o

, then at time t = 2⌧ the signal has decayed only
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(a) t = ⌧ (b) 180�
x

(c) t = 2⌧

(d) t = ⌧ (e) 180�
x

(f) t = 2⌧

Figure 14.15 The spin echo seen in both the lab (top) and rotating (bottom) frames following the
excitation pulse Figure 14.14a. In the rotating frame the refocussed spins appear to be going in the
reverse direction, but this is only relative to the Larmor frequencies. Spins always precess in the same

direction. In (a) is shown th phases at t = ⌧ in the lab frame. In (b) is shown the efocussing pulse 180�
x

in the lab frame. In (c) is shown phases at t = 2⌧ in the lab frame. Both spins come into alignment
with the on-resonance rotating vector. In (d) is shown the phases at t = ⌧ in the rotating frame. In (e)
is shown the refocussing pulse 180�

x

in the rotating frame. In (f) is shown the phases at t = 2⌧ in the
rotating frame. Both spins come into alignment with x’-axis.

by T2 rather than T ⇤
2 , and thus has a magnitude of M

o

e�2⌧/T2 rather than M
o

e�2⌧/T⇤
2 . What

is remarkable about this e↵ect is that after a time t � T ⇤
2 , there is no obverable signal. And

yet, encoded in the spin phases is an order that can be recovered, from which a signal can be
generated.

14.15.2 Multiple epin echoes

At a time ⌧ after the application of the 180� pulse (that is, a time 2⌧ after the excitation) the
spins that are precessing at di↵erent rates come back into phase. But what happens after that?
Well, the spins are still precessing at di↵erent rates, so they continue to get out of phase. In fact,
the situation at time t = 2⌧ look identical to the initial situation at time t = 0 immediately
following the excitation (90�) pulse, except for the T2 decay by an amount e�2⌧/T2 from the
initial magnetization. Therefore if we apply another 180�

y

pulse after another interval ⌧ (a total
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Figure 14.16 Multiple spin echoes. The T

⇤
2 is refocussed by the spin echoes so that the envelope of the

echos decays according to T2 > T

⇤
2 .

time 3⌧ after excitation) then we will get another spin echo after another interval 2⌧ (a total
time 4⌧ after excitation). By doing this, we can create a spin echo train where each of the echoes
is produced by the refocusing of the T ⇤

2 e↵ects. The echoes are still subject to the inevitable
T2 e↵ects and so the echo train amplitudes still decay with amplitudes M

o

e�2n⌧/T2 where n is
the echo number. This is shown in Eqn 14.16. A moments thought will convince you that the
intervals don’t all have to be the same length (here, ⌧), only the intervals on each side of the
180�

y

.

14.15.3 Hasn’t something been simplified here?

The excitation by a 90� pulse to convert the initial longitudinal magnetization into a completely
transverse magnetization, followed by a 180� a time ⌧ later to convert the phases of the still
transverse magnetization is obviously a specific instantiation of pulses. But we know that we
can generate an RF excitation pulse of any angle ↵, and similarly we could apply a refocussing
pulse of any angle ↵0. And we could apply many pulses in a row, and with arbitrary timings in
between them. Aside from the question of why we might want to do that, is “What happens to
the magnetization?”. The general description of this process is not trivial and we will discuss
this in Chapter 21, but the conceptual problem is something that you might want to start
thinking about at this point. So consider Figure 14.15 and think about what would happen
if the excitation pulse (Figure ??) was smaller than 90�, say 45�. In that case, some of the
initial magnetization would be put in the transverse plane and some would remain along the
longitudinal axes. Specifically, the transverse component would be the projection (Section ??)
of the magnetization onto the transverse (xy) plane and the longitudinal component would be
the projection of the magnetization onto the longitudinal (z) axis. Subsequent pulses, either
further excitations or refocussing pulses, then tip each of these components, creating projections
of these projections. And, of course, in the time between pulses, the longitudinal components relax
according to T1 while the transverse component decay according to T2. As you can imagine, as
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the number of pulses is increased, the number of these separate projections multiply, the pattern
of detectable transverse components becoming quite complicated. But there are some very good
reasons for doing this, as we shall see.

Suggested reading


