Lecture 4 Magnetic Resonance Imaging: Physical Principles

Human magnet

3 Tesla Clinical Magnet

The magnet

7 Tesla animal system

Clinical magnet

http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/

The Law of Biot-Savart

Fig. 7.1

A loop

A solenoid

spin is a quantum mechanical phenomenon

spinning charge produces magnetic field and thus a *magnetic moment* $\vec{\mu}$ in the direction of \vec{J}

Interaction of magnetic moment $\vec{\mu}$ with magnetic field causes $\vec{\mu}$ to precess about \vec{B}_o

$$\tau = \mu \times B$$

Interaction of magnetic moment $\vec{\mu}$ with magnetic field causes $\vec{\mu}$ to precess about \vec{B}_o

The measurement of a *single* spin produces one of two energy states and two orientations

But a collections of spins interact, producing mixtures of the two energy states

Magnetic field off

Magnetic field on

Magnetic field off

Magnetic field on

The net magnetization $\vec{\boldsymbol{m}}(t)$ precesses about the magnetic field $\hat{\boldsymbol{B}}_o = B_o \hat{\boldsymbol{z}}$

Equation of motion of the magnetization:

$$\frac{dm(t)}{dt} = \gamma m(t) \times B(t)$$

 $\gamma =$ gyromagnetic ratio

Traditional units

$$\begin{split} \overline{\omega} &= \gamma B \\ \\ [\text{Hz}] &= \left[\frac{\text{Hz}}{\text{Tesla}} \right] \text{ [Tesla]} \\ \\ \hline \overline{\omega} &= \gamma G x \\ \\ \\ [\text{Hz}] &= \left[\frac{\text{Hz}}{\text{Gauss}} \right] \left[\frac{\text{Gauss}}{\text{cm}} \right] \text{ [cm]} \end{split}$$

Precession

Precession

Resonant Frequency: $v_0 = \gamma B_0$ (128 MHz at 3T)

Nuclei with an odd number of neutrons or protons possess spin, and precess in a magnetic field

Gyromagnetic Ratio	
<u>Nucleus</u>	γ <u>(MHz/T</u>)
1 H	42.58
13 C	10.71
19 F	40.08
²³ Na	11.27

17.25

31**P**

The net magnetization $\vec{\boldsymbol{m}}(t)$ precesses about the magnetic field $\hat{\boldsymbol{B}}_o = B_o \hat{\boldsymbol{z}}$

Frequency of precession:

$$\omega_o = \gamma B_o$$

The Larmor Frequency

If $\vec{m}(t)$ is at an angle α relative to \hat{z} , it has a *longitudinal* component $\vec{m}_z(t)$ and a *transverse* component $\vec{m}_{xy}(t)$

 $\vec{m}_{xy}(t) = |\vec{m}_{xy}(t)|e^{i\omega\phi t}$ in main field B_0

this is why we introduced complex numbers!

The NMR signal phase

$\vec{m}_{\perp}(t) = |\vec{m}_{\perp}(t)|e^{-i\varphi(t)}$

 $\varphi = \omega t$ where $\omega = \gamma B$

Precessing magnetization in loop

Signal from precessing spin

Signal detection

Signal detection

Therefore, we measure m_{xy} only (not m_z)

Excitation

Thus, magnetization must be tipped into the transverse plane in order to be detected

Magnetization is tipped by applying a B-field perpendicular that produces a torque

$$oldsymbol{ au} = m imes B$$

Example: for protons, $\tau = 0.1ms$ and $B_1 = 0.6G$ gives $\alpha = \pi/2$

Excitation

By extension, we can rotate the magnetization about any axis in the rotating frame using a suitable RF pulse.

Rotating Frame

lab frame

rotating frame

$$\omega_o = \gamma B_o$$

Rotating Frame

lab frame

rotating frame

$$\omega_o = \gamma B_o$$
RF Excitation

The Rotating Frame of Reference

To keep the B-field perpendicular to the precessing magnetization, it must rotate at the same frequency

A magnetic field B_1 applied along the y' axis that rotates at frequency $\omega_o = \gamma B_o$ relative to the lab frame is called the *rf excitation pulse*, since ω_o is in the radio-frequency (MHz) range.

Excitation (inversion)

lab frame

Excitation

 90° RF pulse

Excitation

 90° RF pulse

The NMR Experiment

The FID

Free induction decay for a Gaussian distribution of isochromats (blue=on) (red=off) resonance

Free Induction Decay

Immediately following termination of excitation pulse:

 Spins precess in main field *Free* for excitation pulses
 There precession generates current in RF coils by the Faraday's Law of *Induction* This signal diminishes exponentially due to *Decay* of the transverse component

> This is called *Free Induction Decay*

Fig. 4.8

T1 relaxation

$$M_z(t) = M_o(1 - e^{-t/T_1})$$

T2 decay

Relaxation The MR Signal

Nuclei tend to align with B_0 with a time constant T1 The NMR signal decays with a time constant T2 The signal is always proportional to the proton density M_0

Typical NMR Parameters (1.5T)			
	$M_0(arb)$	<u>T1(ms)</u>	<u>T2(ms)</u>
GM	85	950	95
WM	80	700	80
CSF	100	2500	250

Dephasing

Free Induction Decay

Free Induction Decay

Free induction decay for a single isochromat blue=on resonance red=off resonance

M(x,y,z)

 T_2 decay in the xy (transverse plane) and T_1 recovery along z

Free Induction Decay

 T_2 is irreversible intrinsic transverse decay

 T_2^* includes reversible decay due to field inhomogeneities

Isochromats

$$\omega = \gamma B$$

All spins precessing at a particular frequency are called an *isochromat*

(same frequency = same "color")

A tale of 3 isochromats

A tale of 3 isochromats

A tale of 3 isochromats

Free Induction Decay

 T_2 is irreversible intrinsic transverse decay

 T_2^* includes reversible decay due to field inhomogeneities

Eliminating T2* effects: Spin Echo

Formation of a Spin Echo

Spin echo

Multiple spin echos

The NMR signal

The NMR signal phase

$$\varphi = \gamma B_1 \Delta t + \gamma B_2 \Delta t + \gamma B_3 \Delta t + \dots$$

$$\varphi(\tau) = \gamma \int_0^\tau B(t) \, dt$$

The NMR signal phase

$$\vec{m}_{\perp}(t) = |\vec{m}_{\perp}(t)|e^{-i\varphi(t)}$$

 $\varphi = \omega t \text{ where } \omega = \gamma B$
 $\varphi = \gamma B_1 \Delta t + \gamma B_2 \Delta t + \gamma B_3 \Delta t + \dots$
 $\varphi = \gamma \Sigma_i B_i \Delta t$

$$\varphi(\tau) = \gamma \int_0^\tau B(t) \, dt$$
The NMR signal

$$s(\omega) = \int_{\Omega} m_{\perp}(\boldsymbol{r},t) e^{-i\varphi(\boldsymbol{x},\tau)} d\boldsymbol{r}$$

where
$$\varphi(x,\tau) = \gamma \int_0^\tau B(x,t) dt$$

The signal is the *Fourier Transform* of the transverse magnetization

The NMR signal

$$s(\omega) = \int_{\Omega} m_{\perp}(r,t) e^{-t/T_2} e^{-i\varphi(x,\tau)} dr$$

 T_2 = transverse relaxation

The signal is not exactly the *Fourier Transform* of the transverse magnetization

Waves in Nature

sand

water

Parameters of a wave

Waves in MRI

MRI

FMRI

Fourier transform of the wave

time series

max |FT(time series)|

FT(time series)

Fourier transform of 2D waves

sin(x, y)

 $|\operatorname{FT}[sin(x,y)]|$

 $sinc^2(x,y)$

 $|\operatorname{FT}[\operatorname{sinc}^2(x,y)]|$