
23 The microscopic theory of di↵usion

23.1 Brownian Motion and Di↵usion

Water molecules are very very small relative to the size of a typical imaging voxels, which might
be ⇡ 1 mm3 and thus contain ?? water molecules. It is hopeless to describe the precise motion
of this collection, or ensemble, of particles as this would require the simultaneous solution of ??
equations of motion. So we are forced to think in terms of the macroscopic descriptions of their
microscopic motions that captures the essential features that will manifest in macroscopically
measurable quantities. Whether or not our conclusions su↵er from such a reduced description
depends upon the relevance of the information we have ignored. As we know from classical
thermodynamics, one does not need to exactly solve the equations of motion for classical gas
molecules, for example, to describe a great deal of its behavior. The reason for this in rooted in
the relevance of the information necessary to construct a predictive model (?).

Let us begin then with Boltzmann’s constant k, which relates the microscopic quantity of the
energy of a particle with the macroscopic property of the temperature: It is the ratio of the gas
constant R to Avogadro’s number N

A

k =
R

N
A

= 1.38 ⇥ 10�23J/K (23.1)

where J stands for Joules and K stands for degrees Kelvin. Boltzmann’s constant relates the
microscopic to the macroscopic through the ideal gas law :

pV = nRT (23.2)

which says that the product of the pressure p and volume V is equal to the product of the
quantity n of a substance, its absolute temperature T and the proportionality constant (the gas
constant) R = 8.314J/(mol � K). Boltzmann’s constant is k = R/N

A

so the ideal gas law can
be written in the form

pV = NkT (23.3)

where N = n/N
A

is the number of molecules of gas. Eqn 23.3 is now a statement about the
microscopic properties of a gas and thus Boltzmann’s constant can be viewed as relating the
microscopic to the macroscopic.

A particle at absolute temperature T has a kinetic energy kT/2 along each axis, independent
of the size of the particle (?), so for a particle with mass m and velocity v, this must be equal to
the classical kinetic energy:

1

2
mv2 =

1

2
kT (23.4)
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The particle velocity fluctuates, but on average
⌦
v2

↵
= kT/m so the root-mean-squared or rms

velocity is
⌦
v2

↵
1/2

= (kT/m)1/2 (23.5)

From Exercise 23.1 we see that the predicted rms velocity of a molecule at can be quite
fast (⇡ 50m/sec at room temp). However, if the molecule is immersed in a complex aqueaous
environment it will be constantly hitting and bouncing o↵ other molecules, which are also moving,
and will therefore be rapidly changing location in a complicated way. A collection of such particles
initially confined to a small area will therefore eventually spread out in space. This is called
di↵usion, which we can define as the random migration of molecules due to motion induced by
thermal energy. The dynamics of biological fluids that lead to Brownian motion are exceedingly
complicated and if we tried to follow the equations of motion for each particle the problem
would be intractable. So once again, as in the the determination of the macroscopic magnetism
(Chapter 13), it is necessary to build the bridge between the microscopic dynamics and the
macroscopic observables through plausible reasoning, i.e., probability theory.

Example 23.1 Calculate the rms velocity of a molecule of molecular weight 1 kg at room tem-
perature (300K�).

Solution

For a molecular weight of 1 kg, the molecule has mass

m = 1kg/mole =
1000g

6 ⇥ 1023molecules
= 1.67 ⇥ 10�21g (23.6)

At 300K� kT = 4.14 ⇥ 10�14g � cm2/sec2 thus

⌦
v2

↵
1/2

= (kT/m)1/2 =

✓
4.14 ⇥ 10�14g � cm2/sec2

1.67 ⇥ 10�21g

◆
1/2

⇡ 50m/sec (23.7)

23.2 The random walk

MRI is all about the imaging of spatial distributions of spins and so we need a concise way
to model the spatial locations of di↵using particles as a function of time. Although di↵usion
of water in the human body is an exceedingly complex process, it is most useful to have a
simple conceptual model with which to describe, and perhaps to better understand, the process
of di↵usion. There is indeed such a model and, somewhat remarkably, its simplicity does not
preclude its accuracy in the description of di↵usion, and in fact facilitates its use as a reliable
computational model. This model is called the random walk . (An excellent introductory text is
which influenced this chapter is (?).) A 2D random walk is depicted in Figure 23.1, where the
motion of a single entity we generically call a ”particle” is considered.

The first thing that we do is simplify the spatial characteristics of the problem by assuming
that particles can only be at predefined discrete points and that these points are arranged on
a Cartesian grid, sometimes called a lattice (in which case the locations of the points are called
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Figure 23.1 The random walk in 2D. A particle starting at location (i, j) at time t on a Cartesian grid
of points can move to one of the four neighboring grid points with probability p

i±1,j±1 where i 6= j.

vertices). While this is certainly a constraint on the allowable locations of the particles, keep in
mind that this grid can be defined at any scale. That is, we can arbitrarily choose the dimensions
of the distance between the grid points. So as long as that dimensions is much smaller than the
dimensions of the physical problem (e.g., much smaller than a voxel’s side dimension), then this
is not much of constraint. (Of course, computationally, as the dimensions of the grid are made
smaller, the number of grid points in a volume grow rapidly, and increases the computational
burden). Next we characterize the temporal characteristics of the problem by saying that at the
next (discrete) time point t + 1, the particle at location (i, j) jumps to any one of neighboring
grid points, say (i, j+1), with a probability p

i,j+1

. In 1D, there are two grid points to jump to. In
2D, there are four, and in 3D there are 6 (so the number of available grid points is apparently 2d
where d is the dimension of the problem.) Since the particle must jump to one of the neighboring
points, the probability that it ends up at another point is 1 which we can state formally (for a
particle starting at location (0, 0)) as

P
1

i=0

P
1

j=0

p
i,j

= 1.

In the simplest case, the probabilities of jumping between any two grid points are all identical.
So in the 2D case shown in Figure 23.1 that means p

i,j+1

= p
i,j�1

= p
i+1,j

= p
i�1,j

. Since
the sum over probabilities must be 1 it is clear that p = 1/4. What does this look like if we
start a particle at (0, 0) and let this process run for n discrete time steps? An example of three
di↵erent realizations of this for n = 10000 time steps is shown in Eqn 23.2. The distribution of
final points and the corresponding histogram along the x-direction is shown in Figure 23.3. It
appears visually that this distribution is Gaussian. (We’ll prove that momentarily). Note that
we could have drawn the blue line in Figure 23.3a in any angle through the origin and gotten the
same Gaussian distribution. This is called isotropic Gaussian distribution and so the process that
generated it is called Gaussian di↵usion. A Gaussian distribution is defined by two parameters
- the mean and the variance. If the distributions along any line drawn through an arbitrary
angle through the origin (e.g. Figure 23.3b) are the same, then it must be that their variances
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(d) The endpoints of 1000 runs.

Figure 23.2 Two-dimensional random walk for n = 10000 time steps for equal probabilities of jumping
between any two grid points. Three realizations are shown in (a-c). Repeating this many times results
in the distribution of final particle locations (for one set of realizations) shown in (d).

are the same. (The means are the same - they all share the same origin where the peak of the
distribution - its mean - is located). Having a variance that is independent of the direction is,
in fact, the definition of isotropic di↵usion. So now we’ve seen qualitatively that this simple
random walk model appears to give a Gaussian distribution. Let’s go ahead and put this on a
more quantitative footing by proving it.

23.3 The random walk and the di↵usion coe�cient

Let’s consider a group, or ensemble, of N non-interacting particles (i.e., they don’t hit each other)
that move with velocity v for a time ⌧ (and thus a distance � = v⌧) in one-dimension (right or
left) with equal probability p(r) = p(l) = 1/2. We’ll also assume that whatever a particle does
at the k’th step is not influenced by what it did at the previous (i.e., (k � 1)’st) step. That is,
the probability p

k

of moving left or right at the k’th step is independent of p
k�1

. The steps are
then said to be statistically independent and thus the probability p

n,n�1,...,1

of a particle going
through a particular sequence of n left/right steps is just the product of probabilities at each
step: p

n,n�1,...,1

=
Q

n

i=1

p
i

. What is the mean and variance of the final distribution of the N
particles after n steps?

Let x
i,n

be the position of the i’th particle after the k’th step. It’s position relative to it’s
previous position x

i,k�1

is just

x
i,k

= x
i,k�1

± � (23.8)
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(a) The distribution of final points. The line
demarkates the x-axis.

(b) Histogram of final points along the x-
direction is Gaussian

Figure 23.3 The distribution of final points (Figure 23.2 (d))

The average position of the N particles after one step is then, using Eqn 23.8,

hxi
N

=
1

N

NX

i=1

x
i,k

=
1

N

NX

i=1

x
i,k�1

| {z }
hx

k�1i
N

+
1

N

NX

i=1

(±�)

| {z }
0

(23.9)

where hi
N

is used to denote the average of N . The second term is 0 because the sign is “+” for
about 1/2 the particles and “-” for the other half. But this just says that hx

k

i
N

= hx
k�1

i
N

- the
average position does not change from step to step. So the average position never changes, and
since the particles start at the origin, it is clear that

hxi
N

= 0 (23.10)

and so the particles spread symmetrically about the origin. By how much do they spread, though?
To answer this, we need to look at the variance

⌦
x2

↵
N

�hxi2
N

=
⌦
x2

↵
N

, the mean squared position
after k steps:

⌦
x2

k

↵
N

=
1

N

NX

i=1

x2

i,k

(23.11)

From Eqn 23.8

x2

i,k

= x2

i,k�1

± 2� x
i,k�1

+ �2 (23.12)

Putting Eqn 23.12 into Eqn 23.11 gives

⌦
x2

k

↵
N

=
1

N

NX

i=1

x2

i,k�1

| {z }
hx

2
k�1i

N

+
1

N

NX

i=1

[±2� x
i,k�1

]

| {z }
0

+
1

N

NX

i=1

�2

| {z }
�

2

(23.13)
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where the second term vanishes because, as we just found, hx
k�1

i
N

= 0. Therefore
⌦
x2

k

↵
=

⌦
x2

k�1

↵
+ �2 (23.14)

Since x
i

(0) = 0 for all particles, for a total of n steps, this leads to
⌦
x2

n

↵
= n�2 =

�
�2/⌧

�
t (23.15)

since each step takes the same time period ⌧ the total time t to take n steps is just t = n⌧ . This
can be written in the form

⌦
x2

↵
= 2Dt (23.16)

where we have defined the di↵usion coe�cient

D =
�2

2⌧
(23.17)

So we see that the mean square root distance
⌦
x2

↵
1/2

= (2Dt)1/2, the measure of how far a
particle moves in time t, i.e., the spreading, is proportional to the square root of time, rather
than a linear function of time as it would be for a group of particles all moving in the same
direction with velocity v, i.e., x = vt, such as in flow. So from this very simple model we are
able to produce an expression for the di↵usion coe�cient consistent with Einstein’s expression in
Section 1.6. But we haven’t yet shown that the distribution is a Gaussian and thus characterized
by the mean and variance given in Eqn 23.10 and Eqn 23.16, respectively.

23.4 How the random walk becomes Gaussian

The situation in the previous section where the particle moves with equal probabilities to the
right or the left and is a specific case of more general case in which a particles is allowed to
move to the left with probability p and to the right with probability q = 1 � p. In this case the
probability of a particle takes n = r + l steps, moving r steps to the right and l steps to the left
is given by the well-known binomial :

p(l; n, p) =
n!

l!r!
plqr =

n!

l!(n � l)!
plqn�l (23.18)

Note that since the total number of steps n is given and the probabilities sum to 1, this expression
has been written in terms of only l and p (the right most equation), and thus just in terms of
the probability of the particle moving to the right. (We could just as well have looked at the left
motion.) The binomial distribution which has mean and variance

µ = hli = np (23.19a)

�2 =
⌦
l2

↵
� hli2 = npq (23.19b)

For n and np large, the binomial distribution can be approximated by the Gaussian distribution

p(l) =
1p

2⇡�2

e�(l�µ)

2
/2�

2

(23.20)

We now need to convert to spatial and temporal coordinates to make the proper connection with
di↵usion. The distance the particle moves in n time steps of length ⌧ is

x
n

= (l � r)� = (2l � n)� (23.21)
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so the mean and variance of x
n

are (using Eqn 23.19)

µ
x

= hx
n

i = (2 hli � n)� = 0 (23.22a)

�2

x

=
⌦
x2

n

↵
= (4

⌦
l2

↵
� 4 hli n + n2)�2 = n�2 (23.22b)

and from Eqn 23.16 n�2 = 2Dt with the di↵usion coe�cient being given by Eqn 23.17, thus

p(x) =
1p

2⇡�2

e�x

2
/2�

2

(23.23)

where the variance is �2 = 2Dt. This is just a one-dimensional Gaussian distribution.

23.5 Isotropic Gaussian di↵usion

We’ve shown how a random walk in one dimension results in the one-dimensional Gaussian
distribution Eqn 23.23. It is easy to now extend this to a two-dimensional random walk where the
particles move independently, with the same probability, in each direction. Because their motion
is independent, the probability of moving in x is independent of the probability of moving in y,
then p(x, y) = p(x)p(y), each of the form Eqn 23.23, and the final distribution of particles is

p(x, y) =
1

2⇡�2

e�(x

2
+y

2
)/2�

2

(23.24)

where the variance is �2 = 2Dt. This is shown several useful graphical forms in Figure 23.4.
Since the particles can jump with equal probability in each direction, the final distribution is
circularly symmetric about the origin. This is called isotropic di↵usion. This is easily extended
to three dimensions isotropic Gaussian distribution where

p(x, y, z) =
1

(2⇡�2)3/2

e�(x

2
+y

2
+z

2
)/2�

2

(23.25)

where �2 = 2Dt. A single instantiation of a three-dimensional random walk is shown in Fig-
ure 23.5a. The final distribution of 10000 particles undergoing a random walk in three-dimensions
is shown in Figure 23.5b.

Problems

23.1 Using the fact that p(x, y) = p(x)p(y) each of the form Eqn 23.23, show that p(x, y) has
the form Eqn 23.24. Do the same for Eqn 23.25.

23.6 Anisotropic Gaussian di↵usion

We’ve been considering only the situation in which the probability of moving in any direction is
the same. This is equilvalent to assuming that the variance or, equivalently, di↵usion coe�cient,
is the same in each direction. In order to study situations in which this is not the case, we can
generalize the previous analysis by using the general form of the expression for the Gaussian
distribution of the final particle positions, the multivariate Gaussian distribution. For a general
n-dimensional vector x = (x

1

, . . . , x
n

), this is

p(x) =
1p

(2⇡)n |⌃|
exp


�1

2
(x � µ)t⌃�1(x � µ)

�
(23.26)
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(a) Final distribution of particles. (b) 2D histogram of the points in (a), i.e., the
number of particles in each small patch is plot-
ted on the z-axis.

(c) Two-dimensional Gaussian pdf p(x, y) rep-
resenting (b).
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(d) Contour plot of p(x, y) in (c).

Figure 23.4 Graphical representations of the 2D random walk.

where µ = (µ
1

, . . . , µ
n

) is the vector of mean values, and ⌃ is the covariance matrix, and |⌃| is
its determinant. For the moment we consider only the case of a diagonal covariance matrix:

⌃ =

0

B@
�2

1

0
. . .

0 �2

n

1

CA (23.27)

which results in Eqn 23.26 taking the form of the product of independent distributions:

p(x) =
nX

i=1

1p
2⇡�2

1

exp


�1

2

(x
i

� µ
i

)2

2�2

1

�
(23.28)
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(a) A single random walk.
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(b) Distribution at time ⌧ . (c) Probability contours for (b).

Figure 23.5 Random walk in three dimensions. A single random walk is shown in (a). In (b) is shown
the distribution of final positions of an ensemble of particles initially at {x, y, z} = {0, 0, 0} at t = 0.
Three (arbitrary) density contours of (b) are shown in (d).
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(a) Final distribution of particles.
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(b) Contours of probability of (a)

Figure 23.6 Anisotropic di↵usion in 2 dimensions for D
x

= 3D
y

.

demonstrating that the existence of o↵-diagonal terms in the covariance matrix induce correla-
tions in the probability distributions. We will consider this later, but for the present problem of
the random walk where x represents spatial coordinates, the expression Eqn 23.28 is enough to
demonstrate the e↵ect of di↵erent di↵usion coe�cients. The two dimensional distribution is

p(x, y) =
1

2⇡�2

x

�2

y

exp

✓
�1

2


(x � µ

x

)2

2�2

x

+
(y � µ

y

)2

2�2

y

�◆
(23.29)

where �2

i

= 2D
i

t, i = x, y. Di↵erences in the di↵usion coe�cients in the x and y directions
thus result in di↵erent variances in the distributions in these directions, as shown in Figure 23.6.
The three-dimensional case where �2

i

= 2D
i

t, i = x, y, z. Di↵erences in the is shown in . These
examples in which the di↵usion is di↵erent along the di↵erent directions is called anisotropic
di↵usion and results, in two-dimensions, in probability contours that are ellipses (Figure 23.6b).
In three dimensions the contours are ellipsoids (Figure 23.7b).
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(a) Final distribution of particles. (b) Contours of probability of (a)

Figure 23.7 Anisotropic di↵usion in 3 dimensions for D
x

= 3D
y

= 3D
z

).

Problems

23.2 Verify that Eqn 23.26 reduces to Eqn 23.24 and Eqn 23.25 for µ
x

= µ
y

= µ
z

= 0 and
�

x

= �
y

= �
z

= �.

Suggested reading

1. Random Walks in Biology by Berg (Oxford,1989) (?)
An excellent introductory text.


