
Lecture 3
Vectors, Matrices, and

Complex Numbers

Lecture Summary

Vectors

Scalars

Matrices 2D Rotations

Complex Numbers

Complex Vectors

Complex
Exponentials

3D Rotations
Think Visually!

Lecture Summary

Most of this chapter is just
packaging and bookkeeping

Vectors

ball has a direction and a velocity

Cartesian coordinate system

x

z

y

first, we need a coordinate system

Cartesian coordinate system

x

z

y

Vector in 3D

x

z

y

xy

z
r

p

o

Coordinate Systems

Cartesian Spherical

Coordinate Systems

Cartesian Spherical

Example: MRI

Echo planar Spiral

Trigonometry

�

rcos � = A/r

sin � = B/r
B = r sin �

A = r cos �

Law of Cosines

�
a

b

c

c2 = a2 + b2 � 2ab cos �

Law of Cosines

cos 90� = 0For right triangle:

�
a

b

c

c2 = a2 + b2 (ref: Pythagoras)

Vector Addition

v1

v2

v3

v3 = v1 + v2

Example

MRI field gradient add like vectors

G
x

Gy G
x

+G
y

Example

Strength of applied gradients

G
x

Gy G
x

+G
y

G
x

Gy G
x

+G
y

weaker stronger

Vector Length (Orthogonal)

y

x

|r| =
�

x2 + y2

r

x = r cos �

y = r sin �

�

x2 + y2

Vector Length (Orthogonal)

y

x

|r| =
�

x2 + y2

r

x = r cos �

y = r sin �

�

x2 + y2 = r2 cos2 � + r2 sin2 �

Vector Length (Orthogonal)

y

x

|r| =
�

x2 + y2

r

x = r cos �

y = r sin �

�

x2 + y2 = r2 cos2 � + r2 sin2 � = r2 (cos2 � + sin2 �)⇤ ⇥� ⌅
1

Vector Length (Orthogonal)

y

x

|r| =
�

x2 + y2

r

x = r cos �

y = r sin �

�

x2 + y2 = r2 cos2 � + r2 sin2 � = r2 (cos2 � + sin2 �)⇤ ⇥� ⌅
1

= r2

Example: Least Squares

y

x

r

�

signal model

noise

data

Vector Angle

y

x

|r| =
�

x2 + y2

r

x = r cos �

y = r sin �

�

tan � =
y

x
� = tan�1

�y

x

⇥

Vector Lengths

catcher throws to second

x = 90’

y = 90’

r

|r| =
�

902 + 902 � 127.3 feet

Vector Notation

r =
�

x
y

⇥
column vector

row vectorq = (a , b)

r =
�

r1

r2

⇥
often written in general form with row subscript

rt = (x , y) vector transpose
(exchange rows & columns)

Vector and Equations

the line

y = � + ⇥x

Vector and Equations

the line

Write in vector form:

f =
�

1
x

⇥
a =

�
�
⇥

⇥

y = � + ⇥x

Vector and Equations

the line

Write in vector form:

f =
�

1
x

⇥
a =

�
�
⇥

⇥

y = � + ⇥x

“amplitudes” “model functions”

Vector and Equations

the line

Write in vector form:

f =
�

1
x

⇥
a =

�
�
⇥

⇥

y = � + ⇥x

Vector and Equations

the line

Write in vector form:

f =
�

1
x

⇥
a =

�
�
⇥

⇥

y = � + ⇥x

Vector Dot Product

f =
�

1
x

⇥
a =

�
�
⇥

⇥

Vector multiplication rule:
Row elements times column elements and add

y =
�
� ⇥

⇥ ⇤
1
x

⌅

Vector Dot Product

f =
�

1
x

⇥
a =

�
�
⇥

⇥

Vector multiplication rule:
Row elements times column elements and add

y =
�
� ⇥

⇥ ⇤
1
x

⌅
= �

Vector Dot Product

f =
�

1
x

⇥
a =

�
�
⇥

⇥

Vector multiplication rule:
Row elements times column elements and add

y =
�
� ⇥

⇥ ⇤
1
x

⌅
= � +

Vector Dot Product

f =
�

1
x

⇥
a =

�
�
⇥

⇥

Vector multiplication rule:
Row elements times column elements and add

y =
�
� ⇥

⇥ ⇤
1
x

⌅
= � + ⇥x

Vector Dot Product

f =
�

1
x

⇥
a =

�
�
⇥

⇥

Vector multiplication rule:
Row elements times column elements and add

y =
�
� ⇥

⇥ ⇤
1
x

⌅
= � + ⇥x

columns here must equal rows here

Vector Dot Product

f =
�

1
x

⇥
a =

�
�
⇥

⇥

Vector multiplication rule:
Row elements times column elements and add

y =
�
� ⇥

⇥ ⇤
1
x

⌅
= � + ⇥x

y = a · f = atf

Vector and Equations

Vector Dot Product

y = a · f = �1 + ⇥x

y =
2�

i=1

aifi

Vector dot product

linear equation

f = ax + by + cz

Write in vector form:

u =

�

⇤
a
b
c

⇥

⌅ v =

�

⇤
x
y
z

⇥

⌅

f =
�
x y z

�
| {z }

ut

0

@
x

y

z

1

A

| {z }
v

= utv

Vector dot product

linear equation

f = ax + by + cz

Write in vector form:

u =

�

⇤
a
b
c

⇥

⌅ v =

�

⇤
x
y
z

⇥

⌅

f =
�
x y z

�
| {z }

ut

0

@
x

y

z

1

A

| {z }
v

= utv

Vector dot product

linear equation

f = ax + by + cz

Write in vector form:

u =

�

⇤
a
b
c

⇥

⌅ v =

�

⇤
x
y
z

⇥

⌅

f =
�
x y z

�
| {z }

ut

0

@
x

y

z

1

A

| {z }
v

= utv

Vector dot product

linear equation

f = ax + by + cz

Write in vector form:

u =

�

⇤
a
b
c

⇥

⌅ v =

�

⇤
x
y
z

⇥

⌅

f =
�
x y z

�
| {z }

ut

0

@
x

y

z

1

A

| {z }
v

= utv

Vector Length, revisited

r =
�

x
y

⇥

rt = (x , y)

column vector

vector transpose

“therefore”

� �r� =
⇥

rtr

rtr = (x , y)
�

x
y

⇥
= x2 + y2

Vector in 3D

x

z

y

xy

z
r

p

o

Vector Length

x

z

y

xy

z
r

�r� =
�

x2 + y2 + z2 =
⇥

rtr

p

o

Vectors in 3D

x

z

y

xy

z
r

p

p =

�

⇤
x
y
z

⇥

⌅

Position vector Velocity vector

v =

�

⇤
vx

vy

vz

⇥

⌅

o =

�

⇤
0
0
0

⇥

⌅ = origin

Vector-Scalar Multiplication

the unit vector

�ê� = 1 �u� = a�ê� = a

ê
u = aê

Vector-Scalar Multiplication

v̂ u = 2v̂ u = �2v̂

Example: Diffusion weighting

g = bĝĝ

x̂

ŷ

x̂

ŷ

(the direction) (the weighting)

Projections

Projections

x

z

y

xy

z
r

Projections

Projections

Projection

u�

u�

Example: Least squares fitting

model
sig

na
l

u� = projection of signal onto model

u� = noise

Projections

X

Y

Z

Θ

"

P

Vector components

X

Y

Z

P

In an orthogonal coordinate system, the vector length is
the square root of the sum of the squares of the

projections along the different axes

�v� =
�

v2
x + v2

y + v2
z =

⇥
vtv

The Dot Product

u

v
�

u · v = ⇥u⇥⇥v⇥ cos �

Projection

v
u

projection of u onto v: u� =
�u · v

v · v

⇥
v

orthogonal complement: u� = u� u⇥

u�

u�

The Cross Product

torque: � = r � F

The Cross Product

angular momentum: L = r � p

The Cross Product

Bo

Μ

nuclear precession

torque: ⌧ = µ⇥B0

The Cross Product

Θ

v1

v2

v1"v2

!v1"v2! Θ

v1

v2

v2"v1

!v2"v1!

v1 ⇥ v2 = |v1||v1| sin ✓n̂

n̂

Matrices

Coordinate, in units of the distance to bases (90’)

x̂ŷ

ẑ

Matrices as collections of vectors

Coordinate system

Coordinate, in units of the distance to bases (90’)

x̂ŷ

ẑ

�

⇤
x
y
z

⇥

⌅

�

⇤
1
0
0

⇥

⌅
�

⇤
0
1
0

⇥

⌅

�

⇤
0
0
1

⇥

⌅

Coordinate system

x̂ŷ

ẑ

�

⇤
1
0
0

⇥

⌅
�

⇤
0
1
0

⇥

⌅

�

⇤
0
0
1

⇥

⌅

(x̂, ŷ, ẑ) =

�

⇤
1 0 0
0 1 0
0 0 1

⇥

⌅ “diagonal matrix”

Two-dimensional matrix

x

y

intensities as a function of x and y

Matrix Notation

A =

�

⇧⇧⇧⇧⇤

a11 a12 . . . a1n

a21
. . .

...
an1 an2 . . . ann

⇥

⌃⌃⌃⌃⌅
=

aij = intensity of voxel in row i and column j

Matrix addition

A B A + B

�
a b
c d

⇥ �
� ⇥
⇤ ⌅

⇥ �
a + � b + ⇥
c + ⇤ d + ⌅

⇥

Matrix transpose

A At

A =
�

a b c
d e f

⇥
At =

�

⇤
a d
b e
c f

⇥

⌅

Symmetric Matrix

A At=

Example: Diffusion Tensor

=

�

⇤
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⇥

⌅

�

⇤
Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⇥

⌅=

D Dt

Matrix Multiplication

Hadamard product
Kroneker product

Dot product

Matrix Multiplication

Hadamard product

ABA B�
a b
c d

⇥ �
� ⇥
⇤ ⌅

⇥ �
�a ⇥b
⇤c ⌅d

⇥

Matrix Multiplication

Kroneker product

A B A�B
�

a b
c d

⇥ �
� ⇥
⇤ ⌅

⇥ �
aB bB
cB dB

⇥

Vector dot product

linear equation

f = ax + by + cz

Write in vector form:

u =

�

⇤
a
b
c

⇥

⌅ v =

�

⇤
x
y
z

⇥

⌅

f =
�
x y z

�
| {z }

ut

0

@
x

y

z

1

A

| {z }
v

= utv

Vector dot product

linear equation

f = ax + by + cz

Write in vector form:

u =

�

⇤
a
b
c

⇥

⌅ v =

�

⇤
x
y
z

⇥

⌅

f =
�
x y z

�
| {z }

ut

0

@
x

y

z

1

A

| {z }
v

= utv

Vector dot product

linear equation

f = ax + by + cz

Write in vector form:

u =

�

⇤
a
b
c

⇥

⌅ v =

�

⇤
x
y
z

⇥

⌅

f =
�
x y z

�
| {z }

ut

0

@
x

y

z

1

A

| {z }
v

= utv

Vector dot product

linear equation

f = ax + by + cz

Write in vector form:

u =

�

⇤
a
b
c

⇥

⌅ v =

�

⇤
x
y
z

⇥

⌅

f =
�
x y z

�
| {z }

ut

0

@
x

y

z

1

A

| {z }
v

= utv

Matrices dot product

a system of linear equations

f1 = a1x + b1y + c1z

f2 = a2x + b2y + c2z

f3 = a3x + b3y + c3z

�

⇤
f1

f2

f3

⇥

⌅ =

�

⇤
a1 b1 c1

a2 b2 c2

a3 b3 c3

⇥

⌅

�

⇤
x
y
z

⇥

⌅

Matrices dot product

a system of linear equations

f1 = a1x + b1y + c1z

f2 = a2x + b2y + c2z

f3 = a3x + b3y + c3z

�

⇤
f1

f2

f3

⇥

⌅ =

�

⇤
a1 b1 c1

a2 b2 c2

a3 b3 c3

⇥

⌅

�

⇤
x
y
z

⇥

⌅

Matrices dot product

a system of linear equations

f1 = a1x + b1y + c1z

f2 = a2x + b2y + c2z

f3 = a3x + b3y + c3z

�

⇤
f1

f2

f3

⇥

⌅ =

�

⇤
a1 b1 c1

a2 b2 c2

a3 b3 c3

⇥

⌅

�

⇤
x
y
z

⇥

⌅

Identity Matrix

I =

�

⇤
1 0 0
0 1 0
0 0 1

⇥

⌅

Ix =

�

⇤
1 0 0
0 1 0
0 0 1

⇥

⌅

�

⇤
x
y
z

⇥

⌅ =

�

⇤
x
y
z

⇥

⌅ = x

Matrix dot product

What about

AB =

�

⇤
a1 b1 c1

a2 b2 c2

a3 b3 c3

⇥

⌅

⌥ ⌃⇧ �
A

�

⇤
x1 x2

y1 y2

z1 z3

⇥

⌅

⌥ ⌃⇧ �
B

Matrices dot product

�

⇤

⇥

⌅ =

�

⇤
a1 b1 c1

a2 b2 c2

a3 b3 c3

⇥

⌅

�

⇤
x1 x2

y1 y2

z1 z3

⇥

⌅?

Matrices dot product

�

⇤
f11

⇥

⌅ =

�

⇤
a1 b1 c1

a2 b2 c2

a3 b3 c3

⇥

⌅

�

⇤
x1 x2

y1 y2

z1 z3

⇥

⌅

Matrices dot product

�

⇤
f11 f12

⇥

⌅ =

�

⇤
a1 b1 c1

a2 b2 c2

a3 b3 c3

⇥

⌅

�

⇤
x1 x2

y1 y2

z1 z3

⇥

⌅

Matrices dot product

�

⇤
f11 f12

f21

⇥

⌅ =

�

⇤
a1 b1 c1

a2 b2 c2

a3 b3 c3

⇥

⌅

�

⇤
x1 x2

y1 y2

z1 z3

⇥

⌅

Matrices dot product

�

⇤
f11 f12

f21 f22

⇥

⌅ =

�

⇤
a1 b1 c1

a2 b2 c2

a3 b3 c3

⇥

⌅

�

⇤
x1 x2

y1 y2

z1 z3

⇥

⌅

Matrices dot product

�

⇤
f11 f12

f21 f22

f31

⇥

⌅ =

�

⇤
a1 b1 c1

a2 b2 c2

a3 b3 c3

⇥

⌅

�

⇤
x1 x2

y1 y2

z1 z3

⇥

⌅

Matrices dot product

�

⇤
f11 f12

f21 f22

f31 f32

⇥

⌅ =

�

⇤
a1 b1 c1

a2 b2 c2

a3 b3 c3

⇥

⌅

�

⇤
x1 x2

y1 y2

z1 z3

⇥

⌅

Matrices dot product

�

⇤
f11 f12

f21 f22

f31 f32

⇥

⌅ =

�

⇤
a1 b1 c1

a2 b2 c2

a3 b3 c3

⇥

⌅

�

⇤
x1 x2

y1 y2

z1 z3

⇥

⌅

[n�m] [m� p][n� p]

dimensions = [rows� cols]

Example: Rotations

q

0.2 0.4 0.6 0.8 1.0 x

0.2

0.4

0.6

0.8

1.0
y

�

R()=

u

v

u = Rv

Rotations

�

x

0
= x cos ✓ � y sin ✓

y

0
= x sin ✓ + y cos ✓

(x, y)

(x0
, y

0)

Rotations

✓
x

0

y

0

◆
=

✓
cos ✓ � sin ✓

sin ✓ cos ✓

◆✓
x

y

◆

Rotations

q

0.2 0.4 0.6 0.8 1.0 x

0.2

0.4

0.6

0.8

1.0
y

u = Rv

�

�
ux

uy

⇥

⇧ ⌅⇤ ⌃
u

=
�

cos � � sin �
sin � cos �

⇥

⇧ ⌅⇤ ⌃
R

�
vx

vy

⇥

⇧ ⌅⇤ ⌃
v

2D Rotation Matrix

R =
�

cos � � sin �
sin � cos �

⇥

R()=

q

0.2 0.4 0.6 0.8 1.0 x

0.2

0.4

0.6

0.8

1.0
y

�

u = Rv

What about rotating an ellipse?

Equation of ellipse

In matrix form

Ax

2 + 2Bxy + Cy

2

~x =

✓
x

y

◆
~Q =

✓
A B
B C

◆

~x

t
~

Q~x

where

What about rotating an ellipse?

~x =

✓
x

y

◆

~x

t
~

Q~x

~

x

0t
~

Q

~

x

0

~

x

0t = ~

R~x

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

What about rotating an ellipse?

x

0t
Qx

0 = (Rx)tQ(Rx) = x

t
R

t
QRx = x

t
Q

0
x

Similarity transform

rotation of ellipse is different than rotation of vector!

x

0 = Rx

rotated axes: ellipse along rotates axes:
x

0t
Qx

0

Q0 ⌘ RtQRwhere

Complex number motivation

MR image

m⇥(x) =
�

s(k)eik·x dk

Euler’s Relation

ei� = cos � + i sin �

This is the key to the relationship between
complex numbers and rotations

i =
⇥
�1

�

The Complex Plane

x = r cos �

y = r sin �
r

|r| =
�

x2 + y2 =
�

r2 cos2 � + r2 sin2 � =
⇥

r2(cos2 � + sin2 �) =
⇥

r2

�

z

x̂

ŷ iŷ

x̂

z = x + iy

�z�What is

�r�

?

x = r cos �

y = r sin �

�

The Complex Plane

x = r cos �

y = r sin �
r

|r| =
�

x2 + y2 =
�

r2 cos2 � + r2 sin2 � =
⇥

r2(cos2 � + sin2 �) =
⇥

r2

�

z

x̂

ŷ iŷ

x̂

z = x + iy

�r�

x = r cos �

y = r sin �

�z� = rit has to be:

Imaginary Numbers

i =
⇥
�1

w = ia , a is real (a � R)

What is magnitude of w?

w2 = i2a2 = �a2

Oops! Can’t have negative magnitude

Complex Conjugate

Replace i with -i

Notice what happens when we multiple
a complex number by its complex conjugate

w� = �ia

w = ia

ww� = (ia)(�ia) = �i2a2 = a2

a is real, w is complex

Define: complex conjugate of w

we get a real number

Complex Number

z� = x� iy

z = x + iy , x and y real

zz� = (x + iy)(x� iy) = x2 + y2

Magnitude of z

�z� =
⇥

z�z

Complex conjugate: Replace i with -i

Complex Conjugation

w⇥ = ae�i� = a(cos � � i sin �)

w = aei� = a(cos � + i sin �)

ww⇥ = (aei�)(ae�i�) = a2ei��i� = a2e0 = a2

Now let’s create a complex number using Euler’s
relation multiplied by a real number a

and create its complex conjugate:

and confirm the result from the previous page:

Complex Number

zz� = (x + iy)(x� iy) = x2 + y2

Magnitude of z

�z� =
⇥

z�z

�z� =
�

(rei�)(re�i�) = r

�

The Complex Plane

x = r cos �

y = r sin �
r

|r| =
�

x2 + y2 =
�

r2 cos2 � + r2 sin2 � =
⇥

r2(cos2 � + sin2 �) =
⇥

r2

�

z

x̂

ŷ iŷ

x̂

z = x + iy

|z| =
�

(x + iy)(x� iy) =
�

x2 + y2

x = r cos �

y = r sin �

Magnitude and phase

Writing complex numbers z = x + i y by using Euler’s relation

z = rei✓

is very convenient since the magnitude is

|z| =
p
zz

⇤
=

(p
(z + iy)(z � iy) =

p
x

2
+ y

2
complex Cartesianp

re

i✓
re

�i✓
=

p
r

2
= r using Euler’s relation

and the phase is

\|z| =
(
tan

�1
�
y

x

�
complex Cartesian

✓ = arg z using Euler’s relation

symbol for angle
stands for “argument” and mean whatever
multiplies i in exponent, which is the phase

Phase angle

Example: Field Maps

magnitude phase

real imaginary

Phase difference

Complex Conjugation

Rotations in 2D

u = R(�)v

Order of Rotations in 2D

R(�1)R(�2) = R(�2)R(�1)

Order of Rotations in 2D

R(�1)R(�2) = R(�2)R(�1)

Order of rotations in 2D does not matter
i.e.,

rotations in 2D commute

Vector rotations in 3D

Just as in 2D,
u = Rv

uv

RWhere is now a 3 x 3 rotation matrix

Rotation Matrices in 3D

Rz(�) =

�

⇤
cos � sin � 0
� sin � cos � 0

0 0 1

⇥

⌅

Ry(�) =

�

⇤
cos � 0 sin�

0 0 0
� sin� 0 cos �

⇥

⌅

Rx(�) =

�

⇤
1 0 0
0 cos � sin�
0 � sin� cos �

⇥

⌅

1

Object Rotations in 3D

But object rotations are another story...

Order of Rotations in 3D

R(�1)R(�2) �= R(�2)R(�1)

Order of Rotations in 3D

Order of rotations in 3D does matter
i.e.,

rotations in 3D do not commute

R(�1)R(�2) �= R(�2)R(�1)

^
necessarily

Describing Rotations in 3D

What’s different about 3D?

Lab (field) coordinates

�v

What’s different about 3D?

�

What’s different about 3D?

Lab (field) coordinates

What’s different about 3D?

Player coordinates

Describing Rotations in 3D

S S�

Similarity Transform

S⇥ = R�1SR

R(�, ⇥)= R�1(�, ⇥)

Looks just the same as in 2D!

Extra slides

Phase Wrapping

Aliasing

The Complex Plane

Matrix Determinant

|A| = area |A| = volume

A = 2� 2 real matrix A = 3� 3 real matrix

Matrix Multiplication

�
a11 a12 a13

a21 a22 a23

⇥ ⇤

⇧
b11 b12 b13

b21 b22 b23

b31 b32 b33

⌅

⌃ =
�

c11 c12 c13

c21 c22 c23

⇥

c12 =
�
a11 a12 a13

⇥
⇤

⇧
b12

b22

b32

⌅

⌃ = a11b12 + a12b22 + a13b32

Dot Product

Complex Numbers

Vector Multiplication

r =
�

x
y

⇥

q = (a , b) columns here

must equal rows here

qr = (a , b)
�

x
y

⇥
= a x + b y

Slides from previous lecture to add here
START

Diffusion Anisotropy in 3D

probability contours in 3D

eigenvectors

-5

0

5

x
-2

0

2

y

-2

0

2

z

The 2D Gaussian Distribution

Covariance matrix Diffusion Tensor

r = {x, y}

⌃ =

✓
�2
x

0
0 �2

y

◆
= 4⌧

✓
D

x

0
0 D

y

◆

-6 -4 -2 2 4
x

-3

-2

-1

1

2

3

y

{D
x

, D
y

} are the principal di↵usivities

P (r|r0, ⌧) ⇠ N(r0,⌃)

-6 -4 -2 2 4
x

-3

-2

-1

1

2

3

y

-6 -4 -2 2 4
x

-3

-2

-1

1

2

3

y

Anisotropic Gaussian Diffusion

eigenvectors

2. The orientation of the largest dimension is related
to the orientation of the structure

1. The relative dimensions of the contours tells us
about local structure

principal
eigenvector

eigenvalues
p

Dy

p
D

x

Covariance Matrix

diffusion tensor

D =
�

Dxx Dxy

Dyx Dyy

⇥

� =
�

�2
xx �2

xy

�2
yx �2

yy

⇥
= 4⇥

�
Dxx Dxy

Dyx Dyy

⇥

⇧ ⌅⇤ ⌃
D

Motiv
atio

n for n
ext le

ctu
re

3D Gaussian Distribution

P (x, t) =
1

(2⇡)3/2|⌃|1/2
exp


�1

2

(x� µ)t⌃�1
(x� µ)

�

Covariance Matrix

diffusion tensor

� =

�

⇤
�2

xx �2
xy �2

xz

�2
yx �2

yy �2
yz

�2
zx �2

zy �2
zz

⇥

⌅ = 6⇥

�

⇤
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⇥

⌅

⌥ ⌃⇧ �
D

D =

�

⇤
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⇥

⌅

�

⇤
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⇥

⌅

symmetric and real

Motiv
atio

n for n
ext le

ctu
re

The Inverse Covariance Matrix

�i =
1
⇥2

i
where

� =
�

�1 0
0 �2

⇥

�2
i = 2Di⇥and

��1 =
�

��1
1 0
0 ��1

2

⇥

eigenvalues of the inverse
covariance matrix are

�

The meaning of the eigensystem

The eigenvectors of D are the unique directions along
which the molecular displacements are uncorrelated

The eigenvalues {Dx,Dy} are the principal

di↵usivities along these directions

The 3D Gaussian Distribution:

r = {x, y, z}

Covariance matrix Diffusion Tensor

⌃ =

0

@
�2
xx

0
0 �2

yy

0
0 0 �2

zz

1

A = 6⌧

0

@
D

x

0
0 D

y

0
0 0 D

z

1

A

P (r|r0, ⌧) ⇠ N(r0,⌃)

�

The Diffusion Tensor

{~e1,~e2,~e3}

are the three unique directions along which the
molecular displacements are uncorrelated

The three eigenvectors of D

The three eigenvalues of D

are the ADC values along these directions

{D
x

, D
y

, D
z

}

Reconstructed Diffusion Tensor
is a VERY simplified model!

diffusion ellipsoids

Mean diffusion Diffusion anisotropy

Measured DTI Parameters
are averaging over A LOT of physiology!

Slides from previous lecture to add here
END

