Lecture 3 Vectors, Matrices, and Complex Numbers

Lecture Summary

Lecture Summary

Most of this chapter is just packaging and bookkeeping

Vectors

ball has a *direction* and a *velocity*

Cartesian coordinate system

first, we need a coordinate system

Cartesian coordinate system

Vector in 3D

Coordinate Systems

Cartesian

Spherical

Coordinate Systems

Cartesian

Spherical

Example: MRI

Echo planar

Spiral

 $A = r\cos\theta$

Law of Cosines

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

Law of Cosines

 $c^2 = a^2 + b^2$ (ref: Pythagoras)

For right triangle: $\cos 90^\circ = 0$

Vector Addition

$$v_3 = v_1 + v_2$$

Example

MRI field gradient add like vectors

Example

Strength of applied gradients

 $x^2 + y^2 = r^2 \cos^2 \theta + r^2 \sin^2 \theta$

$$x^{2} + y^{2} = r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = r^{2} \underbrace{\left(\cos^{2} \theta + \sin^{2} \theta\right)}_{1}$$

$$x^{2} + y^{2} = r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = r^{2} \underbrace{\left(\cos^{2} \theta + \sin^{2} \theta\right)}_{1} = r^{2}$$

Example: Least Squares

Vector Angle

 $\tan \theta = \frac{y}{x} \quad \longrightarrow \quad \theta = \tan^{-1} \left(\frac{y}{x}\right)$

Vector Lengths

catcher throws to second

Vector Notation

$$r = \begin{pmatrix} x \\ y \end{pmatrix}$$
 column vector

 $\boldsymbol{q} = (a \ , \ b)$ row vector

$$\mathbf{r}^{t} = (x, y)$$
 vector *transpose* (exchange rows & columns)

often written in general form with row subscript

$$oldsymbol{r} = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$

the line

$$y = \alpha + \beta x$$

the line

$$y = \alpha + \beta x$$

Write in vector form:

$$\boldsymbol{a} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \qquad \quad \boldsymbol{f} = \begin{pmatrix} 1 \\ x \end{pmatrix}$$

the line

$$y = \alpha + \beta x$$

Write in vector form:

$$oldsymbol{a} = egin{pmatrix} lpha \ eta \end{pmatrix} \qquad oldsymbol{f} = egin{pmatrix} 1 \ x \ x \end{pmatrix}$$

"amplitudes" "model functions"

the line

$$y = \alpha + \beta x$$

Write in vector form:

$$a = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \qquad f = \begin{pmatrix} 1 \\ x \end{pmatrix}$$

the line

$$y = \alpha + \beta x$$

Write in vector form:

$$a = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \qquad f = \begin{pmatrix} 1 \\ x \end{pmatrix}$$

$$a = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \qquad f = \begin{pmatrix} 1 \\ x \end{pmatrix}$$

$$y = \begin{pmatrix} \alpha & \beta \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix}$$

$$a = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \qquad f = \begin{pmatrix} 1 \\ x \end{pmatrix}$$

$$y = \begin{pmatrix} \alpha & \beta \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = \alpha$$

$$a = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \qquad f = \begin{pmatrix} 1 \\ x \end{pmatrix}$$

$$y = \begin{pmatrix} \alpha & \beta \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = \alpha +$$

$$a = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \qquad f = \begin{pmatrix} 1 \\ x \end{pmatrix}$$

$$y = (\alpha \ \beta) \begin{pmatrix} 1 \\ x \end{pmatrix} = \alpha + \beta x$$

$$a = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \qquad f = \begin{pmatrix} 1 \\ x \end{pmatrix}$$

$$y = (\alpha \beta) \begin{pmatrix} 1 \\ x \end{pmatrix} = \alpha + \beta x$$

columns here must equal *rows* here

$$a = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \qquad f = \begin{pmatrix} 1 \\ x \end{pmatrix}$$

$$y = (\alpha \ \beta) \begin{pmatrix} 1 \\ x \end{pmatrix} = \alpha + \beta x$$

$$y = \boldsymbol{a} \cdot \boldsymbol{f} = \boldsymbol{a}^t \boldsymbol{f}$$

Vector Dot Product

$$y = \boldsymbol{a} \cdot \boldsymbol{f} = \alpha \mathbf{1} + \beta x$$

$$y = \sum_{i=1}^{2} a_i f_i$$
linear equation

f = ax + by + cz

linear equation

f = ax + by + cz

linear equation

f = ax + by + cz

linear equation

f = ax + by + cz

Vector Length, revisited

$$\boldsymbol{r} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 column vector

$$\mathbf{r}^{t} = (x \ , \ y)$$
 vector transpose

$$\boldsymbol{r}^t \boldsymbol{r} = (x \ , \ y) \begin{pmatrix} x \\ y \end{pmatrix} = x^2 + y^2$$

"therefore"
$$\therefore \| oldsymbol{r} \| = \sqrt{oldsymbol{r}^t oldsymbol{r}}$$

Vector in 3D

Vector Length

 $\|\boldsymbol{r}\| = \sqrt{x^2 + y^2 + z^2} = \sqrt{\boldsymbol{r}^t \boldsymbol{r}}$

Vectors in 3D

Position vector

Velocity vector

Vector-Scalar Multiplication

 $\|\hat{e}\| = 1$ $\|u\| = a\|\hat{e}\| = a$

Vector-Scalar Multiplication

Example: Diffusion weighting

Example: Least squares fitting

 $u_{\parallel} = \text{projection of signal onto model}$ $u_{\perp} = \text{noise}$

Vector components

In an *orthogonal* coordinate system, the vector length is the square root of the sum of the squares of the projections along the different axes

$$\|\boldsymbol{v}\| = \sqrt{v_x^2 + v_y^2 + v_z^2} = \sqrt{\boldsymbol{v}^t \boldsymbol{v}}$$

The Dot Product

 $\boldsymbol{u}\cdot\boldsymbol{v} = \|\boldsymbol{u}\|\|\boldsymbol{v}\|\cos\theta$

orthogonal complement: $u_{\perp} = u - u_{\parallel}$

projection of u onto v: $u_{\parallel} = \left(\frac{u \cdot v}{v \cdot v}\right) v$

torque:
$$\tau = r \times F$$

angular momentum: $L = r \times p$

nuclear precession

torque: $\tau = \mu \times B_0$

$$\mathbf{v_1} \times \mathbf{v_2} = |\mathbf{v_1}| |\mathbf{v_1}| \sin \theta \mathbf{\hat{n}}$$

Matrices

Matrices as collections of vectors

Coordinate, in units of the distance to bases (90')

Coordinate system

 \mathcal{X} \boldsymbol{y} \mathcal{Z}

Coordinate, in units of the distance to bases (90')

Coordinate system

$$(\hat{x}, \hat{y}, \hat{z}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 "*iagonal matrix*"

Two-dimensional matrix

X

intensities as a function of x and y

Matrix Notation

 a_{ij} = intensity of voxel in row *i* and column *j*

Matrix addition

Matrix transpose

Symmetric Matrix

 $A = A^t$

Example: Diffusion Tensor

 $\begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{pmatrix}$

 $D = D^t$

Matrix Multiplication

Hadamard product Kroneker product Dot product

Matrix Multiplication

Hadamard product

Matrix Multiplication

Kroneker product

linear equation

f = ax + by + cz

linear equation

f = ax + by + cz

linear equation

f = ax + by + cz

linear equation

f = ax + by + cz

a system of linear equations

$$f_1 = a_1x + b_1y + c_1z$$

$$f_2 = a_2x + b_2y + c_2z$$

$$f_3 = a_3x + b_3y + c_3z$$

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

a system of linear equations

$$f_1 = a_1x + b_1y + c_1z$$

$$f_2 = a_2x + b_2y + c_2z$$

$$f_3 = a_3x + b_3y + c_3z$$

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

a system of linear equations

$$f_1 = a_1x + b_1y + c_1z$$

$$f_2 = a_2x + b_2y + c_2z$$

$$f_3 = a_3x + b_3y + c_3z$$

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ \hline a_3 & b_3 & c_3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Identity Matrix

$$\boldsymbol{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\boldsymbol{I}\boldsymbol{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \boldsymbol{x}$$

Matrix dot product

What about

$$\boldsymbol{AB} = \underbrace{\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \\ z_1 & z_3 \end{pmatrix}}_{B}$$

$$\left(\begin{array}{ccc}f_{11} & f_{12} \\ & & \end{array}\right) = \left(\begin{array}{ccc}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{array}\right) \left(\begin{array}{ccc}x_1 & x_2 \\ y_1 & y_2 \\ z_1 & z_3\end{array}\right)$$

$$\left(\begin{array}{ccc} f_{11} & f_{12} \\ f_{21} & f_{22} \\ \end{array}\right) = \left(\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{array}\right) \left(\begin{array}{ccc} x_1 & x_2 \\ y_1 & y_2 \\ z_1 & z_3 \end{array}\right)$$

$$\begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \\ f_{31} & f_{32} \end{pmatrix} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \\ z_1 & z_3 \end{pmatrix}$$

dimensions = $[rows \times cols]$

$$\begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \\ f_{31} & f_{32} \end{pmatrix} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \\ z_1 & z_3 \end{pmatrix}$$
$$[n \times p] \qquad [n \times m] \qquad [m \times p]$$

Example: Rotations

Rotations

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

Rotations

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Rotations

2D Rotation Matrix

What about rotating an ellipse?

Equation of ellipse

 $Ax^2 + 2Bxy + Cy^2$

In matrix form

 $\vec{x}^t \vec{Q} \vec{x}$

 $\vec{x} = \begin{pmatrix} x \\ y \end{pmatrix}$

where

 $\vec{Q} = \begin{pmatrix} A & B \\ B & C \end{pmatrix}$

What about rotating an ellipse?

What about rotating an ellipse?

rotated axes: x' = Rx ellipse along rotates axes: x'^tQx'

$$x'^t Q x' = (Rx)^t Q(Rx) = x^t R^t Q Rx = x^t Q' x$$

where
$$Q' \equiv R^t Q R$$

Similarity transform

rotation of ellipse is different than rotation of vector!

Complex number motivation

$$m_{\perp}(\boldsymbol{x}) = \int s(\boldsymbol{k}) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} d\boldsymbol{k}$$

Euler's Relation

$$e^{i\theta} = \cos\theta + i\sin\theta$$

This is the key to the relationship between *complex numbers* and *rotations*

$$i = \sqrt{-1}$$

The Complex Plane

 $\|\boldsymbol{r}\| = \sqrt{x^2 + y^2} = \sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta} = \sqrt{r^2 (\cos^2 \theta + \sin^2 \theta)} = \sqrt{r^2}$ What is $\|\boldsymbol{z}\|$?

The Complex Plane

 $\|\boldsymbol{r}\| = \sqrt{x^2 + y^2} = \sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta} = \sqrt{r^2 (\cos^2 \theta + \sin^2 \theta)} = \sqrt{r^2}$ it has to be: $\|\boldsymbol{z}\| = r$

Imaginary Numbers

$$i = \sqrt{-1}$$

$$w = ia$$
, a is real $(a \in \mathfrak{R})$

What is magnitude of *w*?

$$w^2 = i^2 a^2 = -a^2$$

Oops! Can't have negative magnitude

Complex Conjugate

$$w = ia \qquad a \text{ is real, } w \text{ is complex}$$

Define: $w^* = -ia \qquad \text{complex conjugate of } w$
Replace *i* with -*i*

Notice what happens when we multiple a complex number by its complex conjugate

$$ww^* = (ia)(-ia) = -i^2a^2 = a^2$$

we get a real number

Complex Number

z = x + iy, x and y real

 $z^* = x - iy$ Complex conjugate: Replace *i* with -*i*

Magnitude of z

$$zz^* = (x + iy)(x - iy) = x^2 + y^2$$

$$\|m{z}\| = \sqrt{m{z}^*m{z}}$$

Complex Conjugation

Now let's create a complex number using Euler's relation multiplied by a real number *a*

$$w = ae^{i\theta} = a(\cos\theta + i\sin\theta)$$

and create its complex conjugate:

$$w^* = ae^{-i\theta} = a(\cos\theta - i\sin\theta)$$

and confirm the result from the previous page:

$$ww^* = (ae^{i\theta})(ae^{-i\theta}) = a^2e^{i\theta - i\theta} = a^2e^0 = a^2$$

Complex Number

Magnitude of z

$$zz^* = (x + iy)(x - iy) = x^2 + y^2$$

$$\|\boldsymbol{z}\| = \sqrt{\boldsymbol{z}^* \boldsymbol{z}}$$

$$\|\boldsymbol{z}\| = \sqrt{(re^{i\theta})(re^{-i\theta})} = r$$

The Complex Plane

$$|\mathbf{r}| = \sqrt{x^2 + y^2} = \sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta} = \sqrt{r^2 (\cos^2 \theta + \sin^2 \theta)} = \sqrt{r^2}$$
$$|z| = \sqrt{(x + iy)(x - iy)} = \sqrt{x^2 + y^2}$$
Magnitude and phase

Writing complex numbers z = x + i y by using Euler's relation

$$z = re^{i\theta}$$

is very convenient since the magnitude is

$$|z| = \sqrt{zz^*} = \begin{cases} \sqrt{(z+iy)(z-iy)} = \sqrt{x^2 + y^2} & \text{complex Cartesian} \\ \sqrt{re^{i\theta}re^{-i\theta}} = \sqrt{r^2} = r & \text{using Euler's relation} \end{cases}$$

and the phase is
$$\angle |z| = \begin{cases} \tan^{-1}\left(\frac{y}{x}\right) & \text{complex Cartesian} \\ \theta = \arg z & \text{using Euler's relation} \end{cases}$$

mbol for angle
stands for "argument" and mean whatever
multiplies *i* in exponent, which *iv* the phase

sy

Phase angle

Example: Field Maps

phase

real

imaginary

Phase difference

Complex Conjugation

Rotations in 2D

 $\boldsymbol{u} = \boldsymbol{R}(\theta)\boldsymbol{v}$

Order of Rotations in 2D

 $\boldsymbol{R}(\theta_1)\boldsymbol{R}(\theta_2) = \boldsymbol{R}(\theta_2)\boldsymbol{R}(\theta_1)$

Order of Rotations in 2D

Order of rotations in 2D does not matter i.e.,

rotations in 2D commute

 $\boldsymbol{R}(\theta_1)\boldsymbol{R}(\theta_2) = \boldsymbol{R}(\theta_2)\boldsymbol{R}(\theta_1)$

Vector rotations in 3D

u = Rv

Where R is now a 3 x 3 rotation matrix

Rotation Matrices in 3D

$$\boldsymbol{R}_{x}(\alpha) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\alpha & \sin\alpha\\ 0 & -\sin\alpha & \cos\alpha \end{pmatrix}$$

$$\boldsymbol{R}_{y}(\beta) = \begin{pmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{pmatrix}$$

$$m{R}_z(\gamma) = egin{pmatrix} \cos \gamma & \sin \gamma & 0 \ -\sin \gamma & \cos \gamma & 0 \ 0 & 0 & 1 \end{pmatrix}$$

Object Rotations in 3D

But *object* rotations are another story...

Order of Rotations in 3D

$\boldsymbol{R}(\theta_1)\boldsymbol{R}(\theta_2) \neq \boldsymbol{R}(\theta_2)\boldsymbol{R}(\theta_1)$

Order of Rotations in 3D

Order of rotations in 3D *does* matter i.e.,

 $\boldsymbol{R}(\theta_1)\boldsymbol{R}(\theta_2) \neq \boldsymbol{R}(\theta_2)\boldsymbol{R}(\theta_1)$

Describing Rotations in 3D

What's different about 3D?

Lab (field) coordinates

What's different about 3D?

What's different about 3D?

Lab (field) coordinates

What's different about 3D?

Player coordinates

Describing Rotations in 3D

Similarity Transform

$$oldsymbol{S}' = oldsymbol{R}^{-1} oldsymbol{S} oldsymbol{R}$$

Looks just the same as in 2D!

Extra slides

Phase Wrapping

Aliasing

The Complex Plane

Matrix Determinant

$$|\mathbf{A}| = area$$

 $A = 2 \times 2$ real matrix

 $|\mathbf{A}| = volume$

 $A = 3 \times 3$ real matrix

Matrix Multiplication

Dot Product

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{pmatrix}$$

$$c_{12} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \end{pmatrix} \begin{pmatrix} b_{12} \\ b_{22} \\ b_{32} \end{pmatrix} = \begin{bmatrix} a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ b_{32} \end{bmatrix}$$

Complex Numbers

Vector Multiplication

$$\boldsymbol{q} = (a \ , \ b)$$
 columns here

must equal *rows* here

$$qr = (a, b) \begin{pmatrix} x \\ y \end{pmatrix} = ax + by$$

Slides from previous lecture to add here START

DIFFUSION ANISOTROPY IN 3D

probability contours in 3D

THE 2D GAUSSIAN DISTRIBUTION

$P(\boldsymbol{r}|\boldsymbol{r}_0,\tau) \sim N(\boldsymbol{r}_0,\boldsymbol{\Sigma})$

ANISOTROPIC GAUSSIAN DIFFUSION

1. The relative dimensions of the contours tells us about local structure

2. The orientation of the largest dimension is related to the orientation of the structure

Covariance Matrix

diffusion tensor

$$\boldsymbol{D} = \begin{pmatrix} D_{xx} & D_{xy} \\ D_{yx} & D_{yy} \end{pmatrix}$$
3D Gaussian Distribution

$$P(\mathbf{x},t) = \frac{1}{(2\pi)^{3/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\mu)^t \Sigma^{-1}(\mathbf{x}-\mu)\right]$$

$\Sigma = \begin{pmatrix} \sigma_{xx}^{2} & \sigma_{xy}^{2} & \sigma_{xz}^{2} \\ \sigma_{yx}^{2} & \sigma_{yy}^{2} & \sigma_{zz}^{2} \\ \sigma_{yx}^{2} & \sigma_{zy}^{2} & \sigma_{zz}^{2} \end{pmatrix} = 6\tau \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix}$

diffusion tensor symmetric and real

$$D = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix}$$

The Inverse Covariance Matrix

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{pmatrix} \qquad \mathbf{\Lambda}^{-1} = \begin{pmatrix} \lambda_1^{-1} & 0\\ 0 & \lambda_2^{-1} \end{pmatrix}$$

where
$$\lambda_i = \frac{1}{\sigma_i^2}$$
 and $\sigma_i^2 = 2D_i \tau$

eigenvalues of the inverse covariance matrix are The eigenvectors of D are the unique directions along which the molecular displacements are uncorrelated

The eigenvalues $\{Dx, Dy\}$ are the principal diffusivities along these directions

THE 3D GAUSSIAN DISTRIBUTION:

 $P(\boldsymbol{r}|\boldsymbol{r}_0,\tau) \sim N(\boldsymbol{r}_0,\boldsymbol{\Sigma})$

 $\boldsymbol{r} = \{x, y, z\}$

THE DIFFUSION TENSOR

The three eigenvectors of **D**

 $\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$

are the three unique directions along which the molecular displacements are uncorrelated

The three eigenvalues of D

 $\{D_x, D_y, D_z\}$

are the ADC values along these directions

RECONSTRUCTED DIFFUSION TENSOR IS A VERY SIMPLIFIED MODEL!

diffusion ellipsoids

MEASURED DTI PARAMETERS ARE AVERAGING OVER A LOT OF PHYSIOLOGY!

Mean diffusion Diffusion anisotropy

Slides from previous lecture to add here END