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Lecture Summary

Most of this chapter 1s just
packaging and bookkeeping



Vectors

ball has a direction and a velocity



Cartesian coordinate system
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first, we need a coordinate



Cartesian coordinate system
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Vector 1n 3D
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Coordinate Systems
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(b) Polar grid.
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Trigonometry

cos = A/r r

B =rsinf
sinf = B/r

A =1rcosf



Law of Cosines

¢ =a’+b°>—2abcosl

_—

0




Law of Cosines

¢ = a’ +b*> (ref: Pythagoras)

For right triangle:  c0s90° = 0



Vector Addition




Example

MRI field gradient add like vectors

Gy




Example

Strength of applied gradients

Gy

Gy Gy

weaker stronger



Vector Length (Orthogonal)

1 | = Va2 +y?

T = 1 Ccos b



Vector Length (Orthogonal)

1 | = Va2 +y?

T = 1 Ccos b

2 + y? = r?cos? 0 + r sin® 0



Vector Length (Orthogonal)

1 | = Va2 +y?

T = 1 Ccos b

r? + y® = r? cos® 0 + r?sin” 0 = r? (cos* 0 + sin* 0)
S
1



Vector Length (Orthogonal)

1 | = Va2 +y?

T = 1 Ccos b

T 4 y2 — 12 cos® 0 4+ rsin? 0 = r? ((3082 0 & sin? ) = r?
S —
1



Example: Least Squares

signal model



Vector Angle

1 =
y = rsin @ T
6
xr = 1 cosf X
tanf = 2 f = tan ! (—
x x

)






Vector Notation

£
r = <y> column vector

q — (Cl , b) row vector

vector lranJspode
(exchange rows & columns)

T (x , y)

often written 1n general form with row subscript



Vector and Equations

the line

y=a+fx



Vector and Equations

the line

Yy =a+ px

Write 1n vector form:

=) ()



Vector and Equations

the line

y=a+fx

Write 1n vector form:

=() ()

“amplitudes” “model functions”



Vector and Equations

the line

Yy =a+ px

Write 1n vector form:

=) =)



Vector and Equations

the line

Yy =a+ px

Write 1n vector form:

=) =0



Vector Dot Product

() ()

Vector multiplication rule:
Row elements times column elements and add

()



Vector Dot Product

() ()

Vector multiplication rule:
Row elements times column elements and add

-t ()=



Vector Dot Product

() ()

Vector multiplication rule:
Row elements times column elements and add



Vector Dot Product

() ()

Vector multiplication rule:
Row elements times column elements and add

y=(a B (i):a t Ba



Vector Dot Product

() ()

Vector multiplication rule:
Row elements times column elements and add

y=(a pB) (i):oz + Bz
\

columnos here .... must equal rows here



Vector Dot Product

() ()

Vector multiplication rule:
Row elements times column elements and add

y=(a B (i):a t Ba




Vector and Equations

Vector Dot Product

y=a-f=al+ Bx

2
Y = Z aifi
i=1



Vector dot product

linear equation

f= axr+by+cz

Write 1n vector form:

a x
U = b vV = Y
C z



Vector dot product

linear equation

f= axr+by+cz

Write 1n vector form:

a x
U = b vV = Y
C z



Vector dot product

linear equation

f= axr+by+cz

Write 1n vector form:

a x
U = b vV = Y
C z



Vector dot product

linear equation

f= axr+by+cz

Write 1n vector form:

a x
U = b vV = Y
C z



Vector Length, revisited

£
r = (y) column vector

rt = (x : y) vector (randpodse

rir = (x, y) (:B) =" +y’

Y

“therefore”

el = Vit




Vector 1n 3D
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Vector Length
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Vectors 1n 3D

Position vector Velocity vector
L (00
P=11Y v = | vy
< Uz

0
o= | 0] = origin
0



Vector-Scalar Multiplication

the wnit vector

lell =1 |ul| = alle] = a



Vector-Scalar Multiplication

e

v u = 20 u = —2v



Example: Diffusion weighting



ojections

Pr




Projections
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Projections
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Projections




Projection

Example: Least squares fitting

projection of signal onto model

noise



Pro; o
roj ections

)
Xy
P*jec Yor

—————

=<



Vector components

In an orthogonal coordinate system, the vector length 1s
the square root of the sum of the squares of the
projections along the different axes

[o] = /v2 + 02 + 02 = Volo




The Dot Product

u - v = ||ul|||v]| cos @



Projection

orthogonal complement: u; =u —

.. U- v
projection of u onto v: w) = ( ) v
V-V



The Cross Product




The Cross Product

angular momentum: L =7 Xp



The Cross Product

nuclear precession

torque: T = u X By



The Cross Product

V1 X Vo = |v1||vy]|sinfn



Matrices



Matrices as collections of vectors
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Coordinate, 1n units of the distance to bases (90")



Coordinate system
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Coordinate, 1n units of the distance to bases (90")



Coordinate system

“Oagonal matrix”

(®,Yy,2) = —

o O =
o = O
— O O

T



Two-dimensional matrix

intensities as a function of x and y



Matrix Notation

a1 ai9 Uln
a21 .
Un1 Un2 Apn

a;; = Intensity of voxel in

row ¢ and column j



Matrix addition




Matrix transpose




Symmetric Matrix

>




Example: Diffusion Tensor

wivle

Iz

Yyz

2



Matrix Multiplication

Hadamard product
Kroneker product

Dot product



Matrix Multiplication

Hadamard product




Matrix Multiplication

Kroneker product




Vector dot product

linear equation

f= axr+by+cz

Write 1n vector form:

a x
U = b vV = Y
C z



Vector dot product

linear equation

f= axr+by+cz

Write 1n vector form:

a x
U = b vV = Y
C z



Vector dot product

linear equation

f= axr+by+cz

Write 1n vector form:

a x
U = b vV = Y
C z



Vector dot product

linear equation

f= axr+by+cz

Write 1n vector form:

a x
U = b vV = Y
C z



Matrices dot product

a system of linear equations

fi = ax+by+ciz
fo = asx+by+coz
f3 = a3x + b3y + c3z
f1 a; b1 ¢
f2 | =1 a2 b2 co

f3 as by c3



Matrices dot product

a system of linear equations

fi = ax+by+ciz
fo = asx+by+coz
f3 = a3x + b3y + c3z
/1 a; b1 ¢
J2 | =1 a2 b2 co

f3 as by c3



Matrices dot product

a system of linear equations

fi = ax+by+ciz
fo = asx+by+coz
f3 = a3x + b3y + c3z
/1 a; b1 ¢
f2 | =1 a2 b2 co

f3 as by c3



Identity Matrix



Matrix dot product

What about
aq b1 C1 L1 L2
as by o Y Yz
as b3 c3 21 23



Matrices dot product

L]
Y1



fi1

Matrices dot product

L]
Y1



fi1

Matrices dot product

f12 a; b1 ¢

L1
Y1



fi1
f1

Matrices dot product

f12 a; b1

L]
Y1



fi1
f1

Matrices dot product

f12 ap b1 ¢
foo as by co
as 193 C3

L1

Y1
<1



fi1
f1
fa1

Matrices dot product

f12 ap b1 ¢
foo | =1 as by co
as 53 C3

L1

Y1
<1



fi1
f1
fa1

Matrices dot product

f12 a; b1
foo | =1 a2 b2 co
f 32 as by c3

L1

Y1
<1



Matrices dot product

dimensions = [rows X cols|

fi1 fi2 a; b1
for foo | =1 a2 b2 co
f31 f32 as by c3

n X p n X mj

L1 L9
yir Y2
<1 <3
m X p)



Example: Rotations

10

0.8 -




Rotations

v’ = xcosl — ysinb

Yy = xsinf + y cos

(=, y")

(7, )




Rotations

'\ [cosf —sinf)\ [x
y' )]  \sinf cosf Y



Rotations

Ugp\ (cosO —sinf\ (v,
u, ) \sinf cosé vy,

1.0

08 -




2D Rotation Matrix

cosff —sinf
= (sin@ cos@)

o
10 -

0.8 -
0.6 -
04 -

02~




What about rotating an ellipse?

Equation of ellipse
Az* + 2Bxy + Cy?

In matrix form

7tOT

where T = @) Q = <g g>






What about rotating an ellipse?
' = Rx 2" Q"
"'Qx’ = (Rx)'Q(Rz) = ' R'QRx = 2'Q'x
Q' =R'QR

Similarity transform

rotation of ellipse 1s different than rotation of vector!




Complex number motivation




Euler’s Relation

e’? — cosf —+ isin @

This 1s the key to the relationship between
complex numbers and rotations

i =+/—1




The Complex Plane

0 A
T ' ~ :
Yy = rsind y = rsin @
0 A 0 :
> L > T
T = 1 Ccos 0 T = 1 cos0

I7ll= V22 + 42 = V12 cos2 0 + r2sin® 0 = \/7“2((30829 +sin? 0) = V2

What 1s HZH ?



The Complex Plane

0 A
T ' ~ :
Yy = rsind y = rsin @
0 A 0 :
> L > T
T = 1 Ccos 0 T = 1 cos0

I7ll= V22 + 42 = V12 cos2 0 + r2sin® 0 = \/7“2((30829 +sin? 0) = V2

it has to be: HZH — 7



Imaginary Numbers

i =+/—1

w = 1a , a is real (a € R)

What 1s magnitude of w?

Oops! Can't have negative magnitude



Complex Conjugate

w =

1Q

Define: w* = —ia

T

a 1s real, w 1s complex

complex conjugate of w

Notice what happens when we multiple

a complex number by its complex conjugate

P 2

ww* = (ia)(—ia) = —1“a” = a

we get a real number




Complex Number

z =x+1y, x and y real

Z25 =@ — Zy Complex conjugate: Replace [ with -

Magnitude of z
22" = (z+iy)(z —iy) = 27 +y

|z]| = vVzrz



Complex Conjugation

Now let’s create a complex number using Euler’s
relation multiplied by a real number a

w = ae’ = a(cosh + isinb)
and create 1ts complex conjugate:

w* = ae”" = a(cosf —isinb)

and confirm the result from the previous page:

ww* = (ae'®)(ae"?) = a2~ = 20 = o2



Complex Number

Magnitude of z

22" = (x +iy)(z —iy) = z° +y°

|z]| = vzrz

2] =/ (rei®)(re=) =1



The Complex Plane

1y 2 =x + 1y
A
T ' ~ :
Yy = rsind y = rsin @
0 A 0 :
>» L > T
T = 1 Ccos T = rcosf

= /22 492 = V72 cos2f + r2sin? § = \/r2(cos29+sin29) — Vr?

= /(z +iy)(z — iy) = Vz2 + ¢2




Magnitude and phase

Writing complex numbers z = & + ( y by using Euler’s relation

2 = re'?

1S Very convenient since the magnitude 1S

/

2+ 1y)(z —iy) = /2% + y? complex Cartesian
V(2 +iy)(z — iy) = /22 +y
\\/rewre—w —Vré=r using Euler’s relation

2| = Vzz* = <

and the phase 1s

(

L|z| = < tan ™! (%) complex Cartesian

\9 — argz using Euler’s relation

symbol for angle

stands for “argument” and mean whatever
multiplies / in exponent, which « the phase



(a) The record spinning on the turntable. (b) The angle of rotation.



Example: Field Maps

phase

magnitude

!
* | \u ,' 1maginary
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Order of Rotations in 2D

Order of rotations 1n 2D does not matter
l.e.,

rotations 1n 21) comumute

R(01)R(02) = R(02)R(01)



Vector rotations 1n 3D

v U
I I
Just as 1n 2D,

u = Rv

Where R 1s now a 3 x 3 rotation matrix



Rotation Matrices 1n 3D

1 0 0
R.(a)=1]0
0
0
R, (0) = 0 1 0
0

cosy sinvy 0
R.(v)=| —siny cosy O
0 0 1



Object Rotations in 3D

But obyject rotations are another story...



{(a) No rotation. () Ratation of WI° abont 2. {e) Raotation of M™ abont .

{d) No rotation. (e} Roration of 80° ahout. §. (f) Roration of 907 ahont 2.




Order of Rotations in 3D

Order of rotations 1n 3D does matter
l.e.,

necessarily

rotations in 3D do nof,commute

R(61)R(02) # R(02)R(01)



Describing Rotations in 3D
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What’s different about 3D?




Lab (field) coordinates




What’s different about 3D?




What’s different about 3D?




Lab (field) coordinates

s e
Rl il =

B, |




What’s different about 31?




Player coordinates
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in 3D

1011S 11N

Describing Rotat



Similarity Transform
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Looks just the same as in 2D!



Extra slides
















Matrix Multiplication

Dot Product

bi1 012 bi3
11 di12 Aa13 b b b (€11 €12 C13
as1 dA29 a3 = — 23|

bs1 b33 b33

C12 = (011 @12 a&s) 092(| =|a11012 + a12022 + a13b32



vy = r Cos(@)




Vector Multiplication

q — (Cl ; b) columno here ....

X
r= ( > must equal rows here



Slides from previous lecture to add here
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r = {x7y}

oz 0 D, 0
E‘(o 05)_47_(0 D,

{D., D, }are the principal diffusivities






Covariance Matrix

O o2 > (D D
E — T Ty — 47_ XL Y
KU ix 4 iy Dyz Dy,
N/
D



3D Gaussian Distribution

_ 1 1 ty—1
P(X7t) - (27_‘_)3/2‘2‘1/2 eXp _§(X_ILL) 2 (X_lu)




Covariance Matrix

2 Z 2
(O-azx ‘Tgy Oé;z Dfm: ny D:Uz
2 _
> = | G%x ng ng =67 | Dye Dyy Dy,
\O22 Ozy 0.2 Dza: Dzy Dzz
N— —
D

D= |Dys Dyy Dy,



The Inverse Covariance Matrix

where ANi = — and 0'7;2 = 2D;T

eigenvalues of the 1nverse
covariance matrix are



THE MEANING OF THE EIGENSYSTEM

The eigenvectors of D are the unique directions along
which the molecular displacements are uncorrelated

The eigenvalues { Dx, Dy} are the principal
diffusivities along these directions



o2 0 D,
_ 2 _
> = 0 o, O =067 | O
0 0 o2 0

r={x,vy,z}




THE DIFFUSION TENSOR

The three eigenvectors of D

are the three unique directions along which the
molecular displacements are uncorrelated

The three eigenvalues of D

are the ADC values along these directions
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Slides from previous lecture to add here

END



