
5 Matrices

5.1 Introduction

A matrix is a two-dimensional array of numbers with an arbitrary number of rows n and columns
m. The standard way to describe a matrix dimensions is #rows ⇥ #columns, i.e., n ⇥ m. The
standard way to label the individual elements of a matrix A is with subscripts in the form arc

where r is the row number and c is the column number. For example, an MR image slice is just
the patterns of intensities arranged in a 2D matrix, as shown in Figure 5.1. A column vector is
really just a n ⇥ 1 dimensional matrix, and a row vector is just a 1 ⇥ m dimensional matrix. A
matrix for which n = m is calle a square matrix . The real utility of matrices is in viewing them
as a collection of vectors, which then leads to their use in linear algebra. Casting equations in
the form of matrices allows general conclusions to be made about the equations (and thus the
physical systems they describe) directly from the general properties of the matrices. This can
greatly simply analyses and provde a concise description complicated physical systems.

There are many ways to introduce and discuss matrices. For our purposes, this is best done
by extending two ideas we defined for vectors - addition and the dot product. But first we define
the generalization of the tranpose we defined for vectors.
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Figure 5.1 A 2D matrix.
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Figure 5.2 The matrix transpose.

5.2 The matrix transpose

The matrix transpose is obtained by interchanging the rows with the columns and symbolized
superscript t: the transpose of A is denoted At. In component notation:

At
ij ⌘ Aji (5.1)

For example, an arbitrary 3 ⇥ 2 matrix and its transpose is
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A graphical example of the matrix transpose is shown in Figure 5.2. Note that for a matrix of
dimensions n ⇥ 1 (i.e., a vector), the matrix transpose reduces to vector transpose Eqn 3.7. The
matrix tranpose converts all the column vectors in the matrix to row vectors, and vise versa.
The transpose of the transpose of matrix returns the original matrix:

(At)t ⌘ A (5.4)

which is clear from both Eqn 5.2 and Figure 5.2.

5.3 Matrix addition, subtraction, and scalar multiplication

Multiplying a matrix A by a scalar q just multiplies the individual elements of A by q:
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The sum of two matrices A and B produces a third matrix C = A+B whose elements are the
sum of the corresponding individual elements in A and B. For example, for two general 2 ⇥ 2
matrices:
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(a) The image matrix A. (b) The noise matrix B. (c) Image + noise matrix A+B.

Figure 5.3 Matrix addition. Artificially adding random noise to an image.

Similarly, matrix subtraction C = A�B produces a matrix similar to Eqn 5.6 with the elements
subtracted rather than added. Clearly in order to sum (or subtract) like elements, matrix addition
or subtraction requires that the two matrices are the same dimensions, and the resulting matrix
will also be of the same dimension. A graphical example of matrix addition is shown in Figure 5.3.
The transpose the sum of two matrices is the sum of the transpose of the individual matrices:

(A + B)t = At + Bt (5.7)

5.4 The matrix dot or inner product

In Section 3.10 it was shown that the inner product of two vectors was obtained by multiplying
the row elements in the first vector with the corresponding column elements in the second vector
and summing the result. This required that the number of columns in the first vector was equal
to the number of rows in the second vector. The matrix dot product just extends this to the
multiple vectors within a matrix: the row vectors of the first (left) matrix multiply the columns
of the second (right) matrix. This requires that the number of columns of the left matrix be the
same as the number of rows of the right matrix.

For example, the multiplication of a general 3 ⇥ 3 matrix times a 3 ⇥ 1 matrix (i.e., a column
vector) is
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where the components involved in the construction of element f
2

have been color-coded to visu-
alize how it is constructed:
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Eqn 5.8 shows that the matrix dot product can be used to concisely express a systems of equa-
tions. In order for Eqn 5.11 to be true, all three equations must be satisfied at the same time.
Thus Eqn 5.11 expresses a simultaneous system of equations.
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A more general example is the inner product of a matrix A of dimension [n ⇥ m] with B of
dimension [m ⇥ p]. For n = m = 3 and p = 2
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where the components involved in the construction of element f
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have been color-coded to
visualize how it is constructed:
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The first column of F is just Eqn 5.8 with a ! b and {v
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It is useful to remember that the “inner” dimension m disappears and the “outer” dimensions
n and p remain. The transpose the product of two matrices is the product the transpose of the
individual matrices in reverse order :

(AB)t = BtAt (5.13)

This follows from the requirement for matrix multiplication that the number of columns of the
left matrix be the same as the number of rows of the right matrix.

A useful example is the dot product of two-dimensional rotation matrix R(✓) with a coordinate
vector v = {x, y}t:
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This dot product rotates the vector in the counter-clockwise direction about the origin by an angle
✓, as shown in Figure 5.4. Writing the rotation in the form R✓ · v rather than explicitly writing
out the components makes expressions not only much cleaner, but ultimately more intuitively
clear.

Problems

5.1 Write out the components of F in Eqn 5.10.

Problems

5.2 Demonstrate Eqn 5.13 using the two matrices in Eqn 5.2.

5.5 Diagonal matrices

A special subset of matrices that will play an important role in many of the applications we will
discuss is one in which only the diagonal elements {aii} of the matrix are non-zero. For example,
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Figure 5.4 The dot product of the rotation matrix Eqn 5.14 on a vector originally aligned along the
x-axis for ✓ = 45�.

a diagonal 3 ⇥ 3 matrix has the form:
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The dot product of a diagonal matrix with a vector has a unique e↵ect, which we see in the case
of a general 3 ⇥ 3 system of equations:
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The resulting vector is the original vector scaled by the diagonal elements. The important point is
that none of the original vector components are combined - they remain as independent elements
in the resulting vector. For example, if the vector v represented orthogonal coordinates such
as the Cartesian unit vectors v = {x̂, ŷ, ẑ}, then multiplication by a diagonal vector would
independently scale the components along these coordinate axes.

An important special case of the diagonal matrices is one in which all the diagonal elements
are 1:
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The matrix I is called the identity matrix because any vector multiplied by it returns unchanged:



60 Matrices
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Problems

5.3 Explicitly demonstrate the truth of Eqn 5.18.

5.6 The matrix trace

The trace of an n ⇥ n matrix A, denoted Tr(A), is the sum of the diagonal elements:
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What might the trace be good for? Consider a special case of section 5.5 where the vector
components along the x, y and z directions are scaled by the constants {a
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The trace of A is then Tr(A) = (a
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)/3 is the
average value of the scaling coe�cients. We will encounter this use of the trace much later when
we consider the di↵usion tensor and find that this trace is proportional to the average di↵usion
coe�cient.

The trace is only defined for square (i.e., n ⇥ n) matrices. Since the diagonal elements of a
square matrix A do not change when we take its transpose, it is clear that the trace of a matrix
is equal to the trace of the transpose of that matrix:

Tr(A) = Tr(At) (5.21)

The trace of the sum of two matrices is the sum of the trace of these two matrices, since
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And the trace of a matrix A times a constant c is just c times the trace of A, since
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The trace also has an interesting property that will prove very useful in Chapter 8. Consider
the trace of the product three n ⇥ n matrices {A,B,C}:
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(a) A (black = 0, white = 1). (b) B. (c) AB = A

ij

B.

Figure 5.5 The Hadamard product.

Thus we see that the trace in invariant to moving the last matrix to the place of the first and
moving every other matrix forward on place. This would also have worked by moving the first to
the end (i.e., Tr(BCA)) and moving every other matrix back a space. The important thing is to
keep the matrices in the correct order relative to one another, with the last (or first, depending
on which way you move them, right or left, respectively) cycling back to the beginning (or the
end). This is called cyclic permutations of the matrices. Therefore we have the important quality
of the trace that it is invariant to cyclic permutations of the matrices.

5.7 Other forms of matrix multiplication

There are actually several ways to multiply matrices. Usually, the context makes the appropriate
multiplication clear, but it can sometimes be confusing. Generally, “standard” matrix multipli-
cation means the matrix inner (or dot) product, which is just the multiplication of the row and
column vectors, as previously described, for each combination of row and column vectors.

The Hadamard product , denoted by the symbol ”�”, is defined between two matrices A and
B of the same size, say n⇥m, is the matrix formed from the product of the individual elements:

C = A � B

or

Cij = AijBij (5.25)
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Note that both matrices must be of the same size to form the Hadamard product. A graphical
example of the Hadamard product is shown in Figure 5.5.

The Hadamard product is the component-wise multiplication of two matrices. If we add up all
these products of Eqn 5.25, that is,
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(a) A (black = 0, white = 1). (b) B. (c) A⌦B = A
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Figure 5.6 The kronecker product.

we get what is called the Frobenius inner product , denoted by the symbol ”:”. It is the component-
wise inner product of two matrices and so is just as if we were treating the matrices as vectors.

The Kronecker product of two matrices, denoted by the symbol ⌦, is formed from multiplying
each element (i.e., the scalar product) of the left matrices with the entire right matrix:

C = A ⌦ B

or

Cij = AijB (5.28)
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The Kronecker product of an m⇥n matrix A by of an o⇥p matrix B results in a matrix that is of
size mo ⇥ np. The Kronecker product is actually a special case of a more general product, called
the tensor product. For the special case that the two matrices are vectors, the tensor product is
referred to as the outer product . An example of the Kronecker product is shown in Figure 5.6.
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5.8 Associative, Distributive, but not necessarily Commutative

Both scalar and vectors obey the three basic properties: they are associative, distributive, and
commutative. Similarly, matrix multiplication is associative

(AB)C = A(BC) (5.31)

and matrix multiplication is distributive

A(B + C) = AB + AC (5.32)

However, the important di↵erent between matrices and vectors is that matrices do not necessarily
commute so that generally multiplication is non-commutative:

AB 6= BA usually (5.33)

This actually make sense intuitively, since in A ·B the rows of A are multiplied by the columns
of B whereas in B ·A the rows of B are multiplied by the columns of A, and there’s no reason
to believe those should be equal. A simple example illustrates this:
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In this case we say that A and B do not commute. This has important implications in many
applications, perhaps most obviously in the matrix representation of rotations which do not
commute and this tells us that the order in which rotations are performed changes the final
results (the direction of a rotated vector, for example).

One matrix that does commute with every matrix, however, is the identity matrix. For an
arbitrary n ⇥ n matrix A the multiplication with the n ⇥ n identity matrix is

IA = AI = A (5.35)

So I and A always commute.

Problems

5.4 Prove Eqn 5.35.

5.9 The matrix determinant

If a matrix A is square (i.e., of dimensions n ⇥ n), then a quantity called the determinant can
be defined, and is symbolized by either det(A) or |A|. There are several very important uses of
the determinant that are not readily apparent from its definition. But in order to understand
these uses, we must first give the definition, as abstruse as it might be, in order to derive some
illustrative examples.

The determinant of matrix A can be computed using any row i from the expression

det(A) =
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aijCij (5.36)
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where the cofactor Cij is the determinant of the minor Mij multiplied by a sign that is positive
or negative depending on whether or not the sum i + j is even or odd:

Cij = (�1)i+j |Mij | (5.37)

The minor Mij is just Aij with the i’th row and j’th column deleted. This all sounds very
complicated but visually we can see it is quite easy, because the above formula allows us to
build up the determinant of a matrix of size n ⇥ n from the the determinant of a matrix of size
(n � 1) ⇥ (n � 1), so it can be built up in successive steps. We begin with the determinant of a
1 ⇥ 1 matrix A = a

11

, which is just det(A) = a
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. From Eqn 5.36, the determinant of a general
two-dimensional matrix is (using i = 1):
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The meaning of this can be made clearer if we consider two 2-dimensional column vectors
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shown in Figure 5.7a. The matrix formed with these vectors as its columns is
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The determinant of A is det(A) = ad � bc. The absolute value of this is just the area of the
parallelogram formed from the two vectors, as seen in Figure 5.7a. We specify that it is the
absolute value that is the area because the determinant can be negative. If the angle between
the vectors is defined in a clockwise direction, this determinant is positive, but if it turns in
a clockwise direction, the determinant is negative. Thus the determinant is coordinate system
dependent and orientation preserving. The fact that this determinant is an orientation preserving
area of a parallelogram suggests a connection between the determinant and the cross product.
We make this connection in Section 5.11.
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detA =

������

a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

������

=

������

a
11

0 0
0 a

22

a
23

0 a
32

a
33

������
+

������

0 a
12

0
a
21

0 a
23

a
31

0 a
33

������
+

������

0 0 a
13

a
21

a
22

0
a
31

a
32

0

������

= a
11

����
a
22

a
23

a
32

a
33

���� � a
12

����
a
21

a
23

a
31

a
33

���� + a
13

����
a
21

a
22

a
31

a
32

���� (5.41)

So the 3 ⇥ 3 is just computed in terms of the 2⇥ 2 determinant, which we know how to compute
from Eqn 5.38. The geometrical interpretation of the determinant of a 3 ⇥ 3 matrix is volume
of a parallelopiped defined by the three column vectors of A, as shown in Figure 5.7b. It is
clear from Eqn 5.41 that the determinant of an n ⇥ n matrix can be written in terms of the
determinants of the (n � 1)-dimensional submatrices. The geometric interpretation for an n ⇥ n

dimensional matrix is that the determinant is the volume of an n-dimensional parallelopiped
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Figure 5.7 The geometry of the matrix determinant.

constructed from, or spanned, by the column vectors. The sign of the determinant will depend
on the orientation of the column vectors.

The interpretation of the determinant as a volume is quite useful in one particular but very
common application - the change of coordinates in integral equations. The change of the volume
element (or measure) of an integral with the change of coordinate system representation (e.g.,
from Cartesian to spherical) is computed from the determinant of a matrix (the Jacobian matrix )
that describes the variations in new coordinates with respect to the old coordinates. This will be
discussed in Section ??.

A few important properties of the determinant of a matrix are that it is equal to the determi-
nant of its transpose:

detA = detAt , (5.42)

the determinant of the inverse is the inverse of the determinant:

detA�1 = (detA)�1 , (5.43)

that the product of two n ⇥ n matrices is the product of their determinants:

det(AB) = det(A) det(B) , (5.44)

and because det(A) and det(B) are just numbers, then det(A) det(B) = det(B) det(A) from
which it can conclude that

det(AB) = det(B) det(A) = det(BA) (5.45)

so that the order matrices are multiplied does not matter in computing the determinant of their
product.

The determinant also plays an important role in the theory of linear equations. As we saw
above, a system of n simultaneous linear equations can be represented by the matrix equation
Ax = b where A is an n ⇥ n matrix and x = {x

1

, . . . , xn}t is the column vector of variables.
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Cramer’s Rule ((?)) states that the the components xj of the solution vector x are given by

xi =
detBi

detA
(5.46)

where Bi is A with the i’th column replaced by b. Notice that the denominator in Eqn 5.46
contains detA which therefore must be non-zero in order for a solution to exist. This is perhaps
the most important property of the determinant: it is a test to see if there is a solution to a system
of equations. A matrix whose determinant is zero is said to be singular . A non-homogeneous
system of linear equations Ax = b has a unique solution if and only if detA is non-singular (i.e.,
not zero).

5.10 Interlude: The Jacobian determinant

Because there are di↵erent coordinate systems to describe the same situation, we need to know
how to transform between them. As we saw in Section 2, a physical situation can be described in
di↵erent coordinate systems, and it is often necessary to transform from one to another. This is
often motivated because there is a “natural” coordinate system for the problem. Describing the
weather on the surface of the Earth suggests a spherical coordinate system, for example. Now, it
might seem pretty straightforward to just pick a coordinate system and then go about describing
the system within it. For example, in three-dimesions, you pick the Cartesian system {x, y, z} or
you pick the spherical system {r, #, '}, and be done with it. Transformation between coordinate
systems can be done by representing the parameters of one in terms of the other. For example,
the Cartesian coordinates in terms of the spherical coordinates are:

x = r sin # cos ' (5.47a)

y = r sin # sin ' (5.47b)

z = r cos ' (5.47c)

whereas the spherical coordinates in terms of the Cartesian coordinates are

r =
p

x2 + y2 + z2 (5.48a)

# = arctan
⇣p

x2 + y2/z
⌘

(5.48b)

' = arctan (y/x) (5.48c)

However, it turns out that there is a subtle but very important thing that happens when you
go from one coordinate system to another: the density of points changes. And this turns out to
be of profound importance to MRI. We’ll encounter this several times, in analyzing the spatial
distortions from curving flow (Section 20.8), in moving from the Cartesian coordinates used stan-
dard formulation of the di↵usion tensor to a spherical desription (Section ??), in designing spiral
trajectories for e�cient di↵usion imaging (Section 22.8), and in assessing the image distortion
caused by field inhomogeneities in echo planar imaging (Section 30.1). This subtle issue arises in
the following way. Imagine that we have a problem that involves the following integral, described
in terms of the n coordinates x = {x

1

, . . . , xn}:

I =

Z
f(x)dx (5.49)
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And now we want to transform this to another coordinate system described by the n new co-
ordinates u = {u

1

, . . . , un}. Our original coordinates x are a function of the new coordinates:
x(u). Thus to go to the new coordinates we write Eqn 5.49 in the new coordinates is

I =

Z
f [x(u)]

����
dx

du

���� du (5.50)

where

dx

du
⌘ J(u) ⌘

0

B@

@x1
@u1

. . . @x1
@u

n

...
...

@x
n

@u1
. . . @x

n

@u
n

1

CA (5.51)

is called the Jacobian of the transformation. This is usually denoted by the shorthand notation

J ⌘ @ (x
1

, . . . , xn)

@ (u
1

, . . . , un)
(5.52)

Eqn 5.50 is called the Change of Variables Theorem (?) and involves the determinant (cf Sec-
tion 5.9) of the Jacobian of the transformation from x to u, which is called Jacobian determinant .
The interpretation of |J | is the following. The symbol where dx in Eqn 5.49 can be written as

dx = dx
1

. . . dxn (5.53)

where dxi symbolizes an infinitesimal line element along the i’th coordinate direction. The symbol
dx is called the measure and is the volume of an infinitesimal element in that space, created from
infinitesimal elements along all the coordinate axes (think of three dimensions - an infinitesimal
cube is Cartesian coordinates is just dx dy dz). Now, if we want to switch to new coordinates
u = {ui}, i = 1, . . . , n, the integral becomes

I =

Z
f(u) |J | du (5.54)

The new volume element |J | du is the infinitesimal volume element du = du
1

. . . dun of the new
coordinates u, times a scaling factor |J |.

The fact that the Jacobian determinant arises as a volume element is a consequence of the
fact that the determinant of an n ⇥ n matrix is the volume of an n-dimensional parallelepiped
(?). Changes in variables stretch the infinitesimal volume element and the Jacobian determinant
takes into account the subsequent change in volume this stretching produces. An example is in
the comparison of the Cartesian grid with the two-dimensional slice through a spherical grid,
also called the polar grid , shown in Eqn 5.8. It is clear that the density of points in the Cartesian
grid is constant, whereas there is a greater concentration of points near the origin of the polar
grid. The Jacobian determinant reflects this density variation.

An important case that will occur frequently in this book is when we want to go from the
Cartesian coordinate system with coordinate variables {x, y, z} to the Spherical coordinate sys-
tem with coordinate variables {r, #, '}. We will then encounter integrals for which Eqn 5.54 looks
like:

Z
f(x, y, z)dx dy dz =

Z
f(r, #, ') |J | dr d# d' (5.55)

This is an important case, so let’s go ahead and calculate the Jacobian determinant for this
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(a) Cartesian grid.
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(b) Polar grid.

Figure 5.8 Points on a Cartesian grid are shown in blue, and those on a (planar) sphereical grid are
shown in red.

transformation. The Jacobian in Eqn 5.51 becomes

J(r, #, ') ⌘

0

B@

@x
@r

@y
@r

@z
@r

@x
@#

@y
@#

@z
@#

@x
@'

@y
@'

@z
@'

1

CA (5.56)

Writing {x, y, z} in spherical coordinates {r sin # cos ', r sin # sin ', r cos #}, and taking the ap-
propriate derivatives, the Jacobian becomes

J(r, #, ') ⌘

0

@
sin # cos ' r cos # cos ' �r sin # sin '

sin # sin ' r cos # sin ' r sin # cos '

cos # �r cos # 0

1

A (5.57)

Computing the determinant of Eqn 5.57 we get the Jacobian determinant of the transformation
from Cartesian coordinates to Spherical coordinates:

|J(r, #, ')| = r2 sin # (5.58)

This tells us that an infinitesimal volume elements in Cartesian coordinates is related to an
infinitesimal volume in spherical coordinates by

dx dy dz = r2 sin # dr d# d' (5.59)

You will see this factor repeatedly in our discussion of the analysis of high angular resolution
DTI data when it will become advantageous to switch from a Cartesian to a Spherical coordinate
system.

One very practical manifestation of the change in density of points occurs when curved flow
is present in MR images which causes artifactually bright regions in vessels (such as the carotid
artery) to appear in images. An example of this e↵ect is shown in the numerical simulation in
Figure 5.9, and is discussed in greater detail in Section 20.8
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Figure 5.9 Simulated flow in a helical tube. On the left is stationary (non-flowing) water. On the right
the water is flowing. This causes the circular object to distort in shape into an ellipse, and the
intensities to appear spatially non-uniform. These distortions can be described by the Jacobian
determinant.

5.11 Interlude: The matrix form of the cross product

The cross product introduced in Section 3.14 appears frequently in MRI theory and it has very
useful matrix representations that facilitate compact expressions of several important equations
(such as the Bloch equations).

For two vectors {u,v} 2 R3

u =

0

@
u

1

u
2

u
3

1

A , v =

0

@
v
1

v
2

v
3

1

A (5.60)

the cross product of u and v is

u⇥ v =

0

@
u

2

v
3

� u
3

v
2

u
3

v
1

� u
1

v
3

u
1

v
2

� u
2

v
1

1

A (5.61)

This can also be written in terms of the matrix multiplication

u⇥ v = A · v (5.62)

where

A =

0

@
0 �u

3

u
2

u
3

0 �u
1

�u
2

u
1

0

1

A (5.63)

In the previous section we suggested a connection between the matrix determinant and the
vector cross product introduced in Section 3.14. Making this connection gives us another matrix
representation of the cross product, this one involving the matrix determinant. With the unit
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vectors along the Cartesian axes {x̂, ŷ, ẑ}, we form the matrix

M =

0

@
x̂ ŷ ẑ
u

1

u
2

u
3

v
1

v
2

v
3

1

A (5.64)

Then the cross product is just the determinant:

u⇥ v = |M | (5.65)

Note that in this case the determinant |M | is not a number (scalar) but a vector. Intuitively,
the cross product suggests a connection with rotations, which will be explored in Section ??.

5.12 The matrix inverse

For the simple equation x = ay where a is a scalar constant, the solution for y is just y = x/a.
A more general notation for this is y = a�1x where the �1 represents the inverse of a for
which a�1 = 1/a and a�1a = 1 defines the inverse operation. Similarly, matrix inverse, denoted
A�1, is the matrix that, when multiplied by the original matrix, produces the identity matrix:
A�1A = I.

In one special kind of matrix the inverse is very similar to the scalar inverse, and that is the
diagonal matrix, where the inverse is

A�1 =

✓
a 0
0 b

◆�1

=

✓
1/a 0
0 1/b

◆
(5.66)

That is, the inverse is just found by taking the scalar inverse of each element. But this is a special
case. For a general matrix A (with elements aij) the computation of A�1 is not found by taking
1/aij . For example, the inverse of the general 2 ⇥ 2 matrix is

A�1 =

✓
a b

c d

◆�1

=
1

ad � bc| {z }
|A|

✓
d �b

�c a

◆
(5.67)

Note that the determinant of A is the denominator in Eqn 5.67. This suggests that if the
determinant of A is zero, it is not possible to calculate the inverse. Indeed, there are two very
important properties of the matrix determinant:

1. If |A| 6= 0 then A is invertible.
2. If |A| = 0 then A is not invertible.

A matrix that is not invertible is called a singular or degenerate matrix. The invertibility of a
matrix is a critical issue in many application, the most ubiquitous perhaps being the solution to
a system of linear equation b = Ax. The solution is x = (AtA)�1Atb which involves the inverse
of the matrix B ⌘ AtA.

There is a distributive property of the matrix inverse like that for the transpose (Eqn ??): the
inverse of the product of two matrices, is the product of the inverse of the individual matrices,
rearranged in reverse order.

(AB)�1 = B�1A�1 (5.68)
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From this we can also see that if two matrices A and B are invertible, then their product AB
is also invertible. Eqn 5.44 leads to the useful property for an invertible matrix A that

det(A) det(A�1) = det(AA�1) = det I = 1 (5.69)

5.13 Calculating the matrix inverse*

The analytic solution for the matrix inverse is

A�1 =
1

|A|

0

BBBB@

C
11

C
21

· · · Cn1

C
12

...
...

C
1n . . . Cnn

1

CCCCA

| {z }
Ct

(5.70)

The inverse involved the transpose of the cofactor matrix Ct, which is called the adjugate matrix ,
and contains the cofactors

Cij = (�1)i+j |Mij | (5.71)

where the minor |Mij | of an n⇥n matrix A is defined as the determinant of the (n�1)⇥ (n�1)
matrix formed by removing the i’th row and the j’th column from A. For example, for the matrix

A =

0

@
1 2 3
4 5 6
7 8 9

1

A (5.72)

the cofactor elements C
32

= (�1)3+2M
32

where

M
32

=

������

1 ⇤ 3
4 ⇤ 6
⇤ ⇤ ⇤

������
=

����
1 3
4 6

���� = (1)(6) � (4)(3) = �6 (5.73)

so that C
32

= 6. In practice, however, the matrix inverse is usually just calculated numerically,
as there are fast algorithms to do so.

5.14 The matrix rank

If a matrix A is singular, then the set of simultaneous equations Ax = b can be decomposed
in an important way. Since A is singular, then there is a subspace of A, called the nullspace of
A, for which Ax = 0. The dimension of the nullspace is called the nullity of A. The remainder
of the space of A that is not zero, the subspace of b that is not zeros, is called the range of A.
Its dimension is called the rank of A. The dimension of A is the dimension of its range and its
nullspace , i.e.,

Dimension [A] = Rank [A] + Nullity [A] (5.74)

An important concept related to the rank concerns how many ”unique” vectors there are in
a system of equations. If an equation can be constructed from the sum of a set of vectors
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t

= (5.79)

Figure 5.10 A symmetric matrix and its transpose.

{v
1

, . . . ,vk} with coe�cients {a
1

, . . . , ak} such that the sum is not zero unless all the coe�cients
are zero, i.e.

kX

i=1

aivi 6= 0 unless ai = 0 (for all i) (5.75)

then the vectors are said to be linearly independent . For example, the vectors that make up
the Cartesian axes (Eqn 3.8) are linearly independent. Moreover, as we saw, any Cartesian
vector in the three-dimensional space (e.g., the baseball field in Figure 3.1) can be expressed as
a combination of these vectors. These vectors are thus said to span the vector space (i.e., the
baseball field) V . We somewhat prematurely called these basis vectors in Section 3.5, but now
we can provide the formal definition that basis vectors are a set of vectors that are (1) linearly
independent and (2) span the space, which indeed these are.

5.15 Symmetric Matrices

There is a special type of matrix, called a symmetric matrix, which is equal to its tranpose:

At = A symmetric matrix (5.76)

Consider general 2 ⇥ 2 matrix that is symmetric

A =

✓
a b

c d

◆
= At =

✓
a c

b d

◆
(5.77)

For this to be true, it must be that b = c, and in general, from Eqn 5.1

Aij ⌘ Aji (5.78)

A moment’s thought will convince you also that a symmetric matrix must be a square matrix.
An example of a symmetric matrix is shown in Figure 5.10.
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Problems

5.5 Try equating the matrix and its transpose in Eqn 5.2 to convince yourself that a symmetric
matrix must be a square matrix.

This case of the symmetric matrix is a good example of how knowing the structure of a matrix
tells us something about the solutions to equations involving it, even if the specific values of the
elements are not known. For, if we had a problem in which we wanted to determine the elements
of the matrix M in Eqn 5.77, the fact that it is symmetric means that the number of unknowns
is not 4, but rather 3, since b = c. For a general n ⇥ n symmetric matrix, which has n2 matrix
elements, the number of unique matrix elements is n(n + 1)/2.

There is a very important theorem: For any m⇥n matrix A of rank r, the matrix formed from
inner product M = AtA is a symmetric matrix that is also of rank r. It is easy to see that it
is symmetric because the transpose of M is M t =

�
AtA

�t
= At

�
At

�t
= AtA = M where we

have used the rule Eqn ?? and the fact that A = At, because it is symmetric. Since M equals
its transpose, it is symmetric.

The symmetric matrix will be important in DTI because the di↵usion tensor is a symmetric
matrix that looks like this:

D =

0

BB@

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

1

CCA = Dt (5.80)

where Dij = Dji (i.e., Dxy = Dyx, etc).

Problems

5.6 Prove that the number of unique elements in an n ⇥ n symmetric matrix is n(n + 1)/2.

5.16 Orthogonal Matrices

There is a special type of matrix, called an orthogonal matrix, whose transpose is equal to its
inverse:

Qt = Q�1 Orthogonal matrix (5.81)

so that QtQ = QQt = I. The name should be orthonormal matrix, but historical usage has
overruled precision in this case. Orthogonal matrices also have the important property that their
determinant is det(Q) = ±1. A very important property of orthonormal properties is that they
preserve length. This is easy to show if we consider a vector v transformed by an orthogonal
matrix Q: u = Qv. Then the length of u is

utu = (Qv)t (vQ) = vt QtQ| {z }
I

v = vtv (5.82)

An important example of an orthogonal matrix is the rotation matrix Eqn 5.83:

R(✓) =

✓
cos ✓ � sin ✓

sin ✓ cos ✓

◆
(5.83)
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Problems

5.7 Show that the 2D rotation matrix Eqn 5.83 is an orthogonal matrix, i.e., that it satisfies
Rt(✓)R(✓) = I.
5.8 Show that a rotated 2D vector does not change its length, i.e., that |R(✓) · v| = |v|. This
is apparent from Figure 5.4.

Example 5.1 Show that the product C = AB of orthogonal matrices A and B is also an
orthogonal matrix.

Solution

Compute the product

CtC = (AB)t (AB) = BtAtAB = BtB = I (5.84)

where Eqn 5.13 has been used.

5.17 Complex matrices

Matrices with complex elements are called complex matrices. The analoque of the transpose of
a complex matrix H is called the Hermitian conjugate

H† ⌘ (H⇤)t complex matrix transpose (Hermitian conjugate) : (5.85)

and the complex analog of the matrix inner product utilizes the Hermitian conjugate, rather
than the tranpose:

H†H complex matrix inner product : (5.86)

The transposition rule for the product of real matrices (Eqn 5.4) becomes for complex matrices

(H†B)† = B†H (5.87)

H very important type of matrix is the complex analogue of the symmetric matrix, a complex
matrix that equals its Hermitian conjugate:

H† = H (5.88)

Such a matrix is called a Hermitian matrix. The diagonal elements of a Hermitian matrix must
be real because each must equal its complex conjugate. Hermitian matrices have some interesting
properties that allow general conclusions to be drawn about results involving them. For example,
consider the complex number c generated by multiplying an arbitrary Hermitian matrix H on
both the right and the left by an arbitrary complex vector v.

c = v†Hv = v†H†v =
⇣
vH†v

⌘†
= c† (5.89)

Note the since c is a just a number, its Hermitian conjugate is just its conjugate c† = c⇤. But in
order for a number to be equal to its complex conjugate, i.e., c = c⇤, the number must be real.
Therefore, it can be concluded that if H is Hermitian, the number c = v†Hv formed from any
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complex vector v is real. This situation arises frequently in least squares problems where H is
the correlation matrix and v is the variable vector.

There is also a complex analog of the orthogonal matrix. The transpose of an orthonormal
matrix is its inverse, and the conjugate transpose (i.e., the Hermitian conjugate) of a unitary
matrix U is its inverse:

U † = U�1 Unitary matrix (5.90)

Unitary matrices U satisfy the complex generalization of Eqn 5.84

U †U = UU † = I (5.91)

and, like orthogonal matrices, preserve the length of the vectors they act upon. That is, a vector
u = Uv formed by the action of a unitary matrix U on the complex vector v has length squared

utu = (Uv)†Uv = v†U †Uv = v†v (5.92)

which is just the length squared of the original vector v.



6 Rotations and A�ne
Transformations

6.1 Motivation

A situation that is encountered often in MRI is that in which some object, such as a vector (e.g.,
the magnetization) or a shape (e.g., a cubic voxel) has its location or geometry altered in some
way by a transformation. The most common of these transformations are translations, rotations,
scaling, and shearing. These are called the a�ne transformations. The matrix contruction of the
previous chapter is particularly well suited to succintly describe and apply such transformations,
and we will see those benefits in this chapter. Among these a�ne transformations, the rotations
are of particular importance in MRI, and arise in a wide range of situations, in a variety of forms,
and are by far the most complicated of the a�ne transformations. They therefore consume the
bulk of this chapter. A brief section below with show that the rotations, along with the rest of
the a�ne transformations, can be combined into a single transformation matrix.

6.2 Rotation of a vector in 2 dimensions

Consider the simple problem of a vector u (Figure 6.1a) that is rotate by an angle ✓ to form
a new vector v shown in Figure 6.1b. The two-dimensional vectors u and v can be written in
terms of their components along the two basis vectors {x̂, ŷ} as u = {ux, uy} and v = {vx, vy}.
We want to relate the components {vx, vy} of the rotated vector v to the components {ux, uy} of
the original vector u. This is shown geometrically in Figure 6.1c where the rotate all the vectors
(u, ux, and uy) in Figure 6.1a by an angle ✓, and denote these new vectors by a u0, u0

x, and

u

ux

uy

x

y

(a) Original vector u and its compo-
nents (projections) u

x

and u

y

along
the x and y axes.

u

v

vx

vy

q

x

y

(b) Rotation of u by ✓ to give a new
vector v with components v

x

and v

y

along the x and y axes.

v=u'

ux 'uy'

ux Sin q

ux Cos q

-uy Sin q

uy Cos q
q

q

x

y

(c) The x projections of the rotated
projections in (a) sum to v

x

and the
y projections sum to v

y

.

Figure 6.1 Rotation of a vector in two dimensions.
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u0
y, where u0 = v. From this we see that the components of the rotated vector v in terms of the

components of the original vector u are

vx = ux cos ✓ � uy sin ✓ (6.1a)

vy = ux sin ✓ + uy cos ✓ (6.1b)

But notice that this can be written in the form
✓

vx

vy

◆

| {z }
v

=

✓
cos ✓ � sin ✓

sin ✓ cos ✓

◆

| {z }
R(✓)

✓
ux

uy

◆

| {z }
u

(6.2)

The matrix

R(✓) =

✓
cos ✓ � sin ✓

sin ✓ cos ✓

◆
(6.3)

is called a rotation matrix because multiplying a vector by R(✓) rotates that vector through the
angle ✓. The rotation depicted in Figure 6.1b can then be written simply v = R✓u (where we
use the shorthand notation R✓ = R(✓))

6.3 Rotation of an ellipse in 2 dimensions

The rotation of a vector involved the simplest rotational transformation: Multiplication of the
original vector u by a two-dimensional rotation matrix R✓ to produce a rotated vector v = R✓u.
However, how an object (e.g., a vector) is rotated depends upon what that object is. In fact,
mathematical objects are defined by how they transform. That is, a vector can be defined as a
quantity that transforms according to this formula. To demonstrate this dependence explicitly,
let’s now consider the rotation of a shape. A simple example is an ellipse, shown in Figure 6.2a,
whose equation is

x2

r2

1

+
y2

r2

2

= 1 (6.4)

where r
1

is called the semi-major axis and r
2

is the semi-minor axis, and r
1

> r
2

. Together are
called the principal axes of the ellipse. At the point the ellipse intersects the y-axis (i.e., y = 0)
1 = x2/r2

1

, that is x = r
1

. Similarly, at the point it intersects the x-axis (i.e., x = 0) 1 = y2/r2

2

,
that is y = r

2

. So we see that r
1

and r
2

are the lengths of the principal axes. Eqn 6.4 is an
example of a quadratic equation because of the powers to which the variables x and y are raised.
To facilitate the use of our rotation matrix, let’s write this equation in matrix form by defining
xt = (x, y) and �i = 1/r2

i to get

xt⇤x = 1 (6.5a)

where ⇤ =

✓
�

1

0
0 �

2

◆
(6.5b)

Eqn 6.6, being a matrix version of the quadratic equation Eqn 6.4, is an example of a quadratic
form. We can think of every point on the ellipse as being a vector from the origin to that point,
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(b) Rotated ellipse.

Figure 6.2 Rotation of an ellipse by an angle ✓.

so to rotate the shape means to rotate all the points at once: ⇠ = R✓x. So a rotated ellipse will
just be

⇠t⇤⇠ = xtRt⇤Rx = 1 (6.6)

where we’ve used Eqn 5.13. But this looks just like Eqn 6.5a if we write it as

xtQx = 1 (6.7a)

where Q = Rt⇤R (6.7b)

Note that the matrix Q, unlike the matrix ⇤, is not diagonal:

Q =

✓
�

2

sin2 ✓ + �
1

cos2 ✓ �
2

sin ✓ cos ✓ � �
1

sin ✓ cos ✓

�
2

sin ✓ cos ✓ � �
1

sin ✓ cos ✓ �
1

sin2 ✓ + �
2

cos2 ✓

◆
(6.8)

The diagonal quality of ⇤ expresses the fact that the semi-major and semi-minor axes point
along the x and y axes. The non-diagonal quality of Q expresses the fact that the semi-major
and semi-minor axes have been rotated relative to the x and y axes. The transformation Eqn 6.7
that takes ⇤ to Q is a special case of a similarity transformation. Now, we have constructed this
rotated ellipse by rotating all of the points xt simultaneously through the angle ✓. But a very
important point must be made here. The ellipse is defined by the parameters {r

1

, r
2

} and thus
by the vectors {u, v}. The rotation of the points in the ellipse results in the rotation of {u, v} to
their rotated version {u0, v0}. Therefore we make an interesting, and ultimately very practically
important, observation. If we had started with the rotated ellipse Figure 6.2b and rotated this by
an angle �✓ so that it was aligned as in Figure 6.2a, then the matrix Q would become diagonal
(i.e., reduce to ⇤) and we could just read o↵ the parameters {r

1

, r
2

} = {1/�
1

, 1/�
2

} that define
the ellipse. This relationship between rotations, shape parameters, and the principle axes will
become a central issue when we discuss eigenvectors and eigenvalues in Chapter 8.

In passing, it is worth noting that since the �’s are real numbers (as are the trigonometric
functions of ✓), the matrix Q is also real. Also notice that the o↵-diagonal terms of Q are equal,
so that Q is a real, symmetric matrix.
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(a) Complex vector z = re

i✓.

q

f

u

v

0.0 0.2 0.4 0.6 0.8 1.0
Re@zD0.0

0.2

0.4

0.6

0.8

1.0
Im@zD

(b) Complex vector in (a) rotated by an
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Figure 6.3 Rotation of a complex vector of radius r = .9 and phase angle ✓ further rotated by an angle
�.

6.4 Rotations in 2 dimensions: Complex Representation

It was probably already clear to you after reading Chapter 4 that complex numbers provide an
e�cient way to describe rotations in two-dimensions since the rotation angle of a vector in the
complex plane is precisely the phase in exponent of Euler’s relations (Eqn 4.9) and that the
representation of a complex number in terms of its amplitude and phase (Eqn 4.10) therefore
provides a simple means of describing an arbitrary two-dimension vector pointing out from the
origin. An example is shown in Eqn 6.3 where a complex vector initially oriented at an angle
✓ is further rotated through an angle �. This example serves to emphasize that the complex
representation, using Euler’s relation, which decouples the amplitude and phase, provides a very
simple way to induce a rotation, without changing the length of the vector, merely by adding an
additional phase in the exponent.

6.5 Rotations in 3 dimensions

An arbitrary rotation in three dimensions can be described by three angles so that any rotation
can be performed by the succession of three separate rotations about the three Cartesian axes
{x, y, z}. This is known as Euler’s rotation theorem (?). That is

R(↵, �, �) = Rx(↵)Ry(�)Rz(�) (6.9)
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where the rotations about the x, y, and z axes in a clockwise direction (when looking towards
the origin) are represented in matrix form, respectively, as the following three matrices in R3:

Rx(↵) =

0

@
1 0 0
0 cos ↵ � sin ↵

0 sin ↵ cos ↵

1

A , Rotation about x by ↵ (6.10a)

Ry(�) =

0

@
cos � 0 sin �

0 1 0
� sin � 0 cos �

1

A , Rotation about y by � (6.10b)

Rz(�) =

0

@
cos � � sin � 0
sin � cos � 0

0 0 1

1

A , Rotation about z by � (6.10c)

Notice that the order of application of these operations is from right to left: the rotations take
place along z, then y, and then x.

The structure of the rotation matrices in Eqn 6.10 is actually quite simple: They are the two-
dimensional rotation matrix Eqn 6.3 embedded within a 3 ⇥ 3 matrix in the locations of the
plane of rotation, with a 1 in the location that depends only on the rotation axis (the axis about
which the rotation occurs), and zeros in the elements that couple the plane with the rotation
axis. For example, Rz(�) (Eqn 6.10c) has a 1 in the location that depends only on the rotation
axis z, about which the rotation is occuring, zeros in the elements that couple the plane (x or y)
with the rotation axis z, and the elements of the 2 ⇥ 2 rotation matrix are in components that
depend on x and y, since the rotation is in the x � y plane. Thus the element of a vector along
the rotation axis remains unchanged, while the elements in the plane are rotated. We can see
this explicitly by creating the dot product of each of these matrices with an arbitrary vector of
cartesian components vt = (x, y, z):

Rx(↵) · v =

0

@
1 0 0
0 cos ↵ � sin ↵

0 sin ↵ cos ↵

1

A

0

@
x

y

z

1

A =

0

@
x

y cos ↵ � z sin ↵

z cos ↵ + y sin ↵

1

A (6.11a)

Ry(�) · v =

0

@
cos � 0 sin �

0 1 0
� sin � 0 cos �

1

A

0

@
x

y

z

1

A =

0

@
x cos � + z sin �

y

z cos � � x sin �

1

A (6.11b)

Rz(�) · v =

0

@
cos � � sin � 0
sin � cos � 0

0 0 1

1

A

0

@
x

y

z

1

A =

0

@
x cos � � y sin �

y cos � + x sin �

z

1

A (6.11c)

Alternatively, an arbitrary rotation can also be performed by the following sequence of rotations
that are defined in the successively rotated coordinate systems: a rotation of � is performed about
the z-axis in the original coordinate system. Then a rotation of � is performed about the x-axis
in this rotated coordinate system (let’s call it x0) and then a rotation of ↵ is performed about
the z-axis again in this twice rotated system (let’s call it z00). That is,

R(↵, �, �) = Rz00(�)Rx0(�)Rz(↵) (6.12)

So defined, the angles {↵, �, �} are called the Euler angles. This is shown in Figure 6.4. Each of the
rotation matrices Rx(↵),Ry(�),Rz(�) are orthogonal matrices and thus from Section 5.16 the
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Figure 6.4 The Euler Angles {↵,�, �}. The {x, y, z} axes in the rotated frame are colored red, green,
and blue. Rotations angles are {↵,�, �} = {⇡/8,⇡/4,⇡/6}. Need to put arcs and angle labels in

these figures!. This demonstrates Euler’s theorem that a general rotation can be written as the
composition of rotations about the three axes.

general rotation matrix R(↵, �, �), as the product of orthogonal matrices, is also an orthogonal
matrix. From the discussion in Section 5.16 we can conclude that the rotation of a vector does not
change the length of the vector, which we know intuitively. We will use this fact in Section 29.6,
among other places, in our DTI calculations. As discussed in Section ??, on 3D rotation matrices
do not commute, which means that the order of their application matters, as demonstrated in
Figure 6.5.

The ability to compactly represent rotation in matrix form as Ri(') to represent a rotation by
angle ' about the i’th axis, and the ability to combine these matrices from multiple rotations into
a single matrix will provide very useful. For example, the application of radio-frequency (RF)
pulses can be represent by such matrices and multiple pulses by the combined matrices. This
notation allows you to represent such phenomenon without writing all the components which
adds no new intuitive insight and just clutters up the picture.

6.6 Commutation relations

Now, what if we follow the rotation of a vector u by an angle ✓ to a new vector u0 = R(✓)u
by a rotation by �✓? The vector returns to its original position pointing along the y-axis - we
have undone the first rotation. Let’s call this twice-rotated vector u00, and express it both as the
rotation by �✓ of the once-rotated vector u0, and as the original vector u to which it returns:

u00 = R(�✓)u0 = u (6.13)

If we substitute Eqn ?? into Eqn 6.13 we see that

u = R(�✓)R(✓)u (6.14)

from which we see that the following must be true:

R(�✓)R(✓) =

✓
1 0
0 1

◆
= I

2

(6.15)
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(a) No rotation. (b) Rotation of 90� about ẑ. (c) Rotation of 90� about ŷ.

(d) No rotation. (e) Rotation of 90� about ŷ. (f) Rotation of 90� about ẑ.

Figure 6.5 An example of non-commuting matrices. Three-dimensional rotation matrices do not
commute. That is, the order of their application matters. Rotation about ẑ then ŷ (top) does not equal
rotation about ŷ then ẑ (bottom).

where I
2

is the identity matrix in 2-dimensions which returns unchanged the vector it multiplies:
v = Iv. From Eqn 6.15 we conclude

R(�✓) = R�1(✓) (6.16)

That is, R(�✓) is the inverse denoted by R�1) of R(✓). That is, it undoes the e↵ect of R(✓).
Now consider the e↵ect of two successive rotations, by angles ✓

1

and ✓
2

, respectively, as shown
in Figure 6.6. As above, the first rotation brings the vector u to u0 and the second bring u0 to
u00. Using the shorthand Ri = R(✓i) This we write as

u00 = R
2

u0 = R
2

R
1

u (6.17)

Since we can multiply matrices together let’s do it and write Eqn 6.17 as

u00 = R(✓
1

, ✓
2

)u (6.18)
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(c) ... is the same as a single rotation
by ✓1 + ✓2.

Figure 6.6 Successive rotations in two dimensions.

where

R(✓
1

, ✓
2

) =

✓
cos ✓

1

sin ✓
1

� sin ✓
1

cos ✓
1

◆

| {z }
R1(✓1)

✓
cos ✓

2

sin ✓
2

� sin ✓
2

cos ✓
2

◆

| {z }
R2(✓2)

=

✓
cos(✓

1

+ ✓
2

) sin(✓
1

+ ✓
2

)
� sin(✓

1

+ ✓
2

) cos(✓
1

+ ✓
2

)

◆
(6.19)

But this is just a rotation of the original vector u by the angle ✓
1

+✓
2

. Thus the multiple rotations
a↵ected by the rotation matrices R

1

and R
2

is equivalent to the operation of a single rotation
matrix R(✓

1

, ✓
2

). Notice that as a consequence of Eqn 6.17, Eqn 6.18, and Eqn 6.19, that the
order that we apply two di↵erent rotations does not matter. That is, since R(✓

1

, ✓
2

) = R(✓
2

, ✓
1

)

R
1

R
2

u = R
2

R
1

u = (R
1

R
2

� R
2

R
1

) = [R
1

,R
2

]u (6.20)

where we have defined

[A, B] = AB � BA (6.21)

This is called the commutator , which is important because, as we saw in Section 5.8, matrices
do not necessarily commute. If matrices do not commute, that means that the order in which
they are applied makes a di↵erence. The commutator thus tells us specifically how this di↵erence
in the order of operation is manifest. As we will see in the next section, two dimensions is a
lot simpler than three dimensions, because while rotations in two dimensions can be applied
in any order, since the two-dimensional rotation matrices commute, this is not true in three-
dimensions. This so-called non-commutative property of rotations in 3-dimensions has profound
physical consequences that we shall encounter in later chapters. The fact that two-dimensional
rotations commute is easily seen in Figure 6.7
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Elvis

Θ1"0#

(a) 33rpm

Elvis Θ1"45#

(b) 33rpm

Elvis

Θ2"60#

(c) 33rpm

Elvis

Θ1"0#

(d) 33rpm

Elvis
Θ1"60#

(e) 78rpm

Elvis

Θ2"45#

(f) 33rpm

Figure 6.7 Rotations in 2-dimensions commute. Rotation by 45� then 90� is the same as rotation first
by 60� then by 45�.

6.7 Interlude: Coordinate rotations

An important example of a 3D rotation that will arise frequently is the rotation of coordinates. A
very simple example is illustrated in Figure 6.8 where the Cartesian coordinate system is rotated
about the z-axis. This transformation can be simply a↵ected by multiplying the matrix of basis
vectors M (Eqn ??) by the z rotation matrix Rz('):

Rz(') · M =

0

@
cos ' � sin ' 0
sin ' cos ' 0

0 0 1

1

A

0

@
1 0 0
0 1 0
0 0 1

1

A =

0

@
cos ' � sin ' 0
sin ' cos ' 0

0 0 1

1

A (6.22)

6.8 Rotations in 3 dimensions: Complex Representation*

As we saw in Chapter 4 and Section ??, there is a close relationship between the complex rep-
resentation of numbers and rotations. So it is should not be surprising that there should be a
way to represent rotations in 3D using complex numbers. Indeed, there is, and we will find this
representation to be important in several areas of MRI and DTI, such the Bloch equations, the
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(a) The Cartesian coordinate system.
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(Figure just placeholder - put in ro-
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Figure 6.8 Rotation of the Cartesian coordinate system.

description of RF pulses and coherence pathways, and the manipulation of generalized tensors
using spherical harmonics (these terms will become familiar to you.) However, while this refor-
mulation of the rotations in terms of complex numbers is an exceedingly useful way to represent
rotations, it turns out to be quite a subtle business.

So let’s motivate our discussion by giving the punchline. Just as a rotation can be described by
the product of three 3⇥ 3 real, orthogonal matrices {Rx(↵),Ry(�),Rz(�)}, describing rotations
about the {x, y, z} axes respectively (Eqn 6.9) by angles {↵, �, �}, so to can the same rotation
be described by the product of three 2 ⇥ 2 unitary matrices (Section ??)

U(↵, �, �) = Ux(↵/2)Uy(�/2)Uz(�/2) (6.23)

with angles (defined below) {⇠, ⌘,�}. Recall that a unitary matrix is in some ways the complex
analogue of the orthogonal matrix in that it preserves the length of a complex vector (Section ??),
just as an orthogonal matrix preserves the length of a real vector (Section 5.16). The preservation
of length is one of our requirements of the transformation being just a rotation.

A general element of the group SU(2) is

U =

✓
a b

�b⇤ a⇤

◆
(6.24)

where a and b are called the Cayley-Klein parameters. Since U is unitary, |U | = a⇤a + b⇤b = 1.
The matrix U transforms a complex two component vector w, called a spinor :

✓
u0

v0

◆

| {z }
w0

=

✓
a b

�b⇤ a⇤

◆

| {z }
U

✓
u

v

◆

|{z}
w

(6.25)

The Cayley-Klein parameters depend upon the representation of the rotation. Now we need to
find an explicit form for U . First, we recall ((?)) that any 2⇥2 matrix can be expressed in terms
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of the Pauli matrices:

�x =

✓
0 1
1 0

◆
, �y =

✓
0 �i

i 0

◆
, �z =

✓
1 0
0 �1

◆
(6.26)

which, along with the 2 ⇥ 2 identity matrix,

�
0

=

✓
1 0
0 1

◆
(6.27)

form an orthogonal basis for the complex Hilbert space of all 2 ⇥ 2 matrices. The Pauli matrices
satisfy (Exercise 6.1).

�2

i = 1 (6.28a)

�i�j = �k , cyclic permutations (6.28b)

�i�j + �j�i = 2�ij�0

(6.28c)

Thus we can write

U =
4X

i=1

ci�i (6.29)

where the ci are constants. For example, if ci = 0, x, y, z, then the matrix

A = 0�
0

+ x�
1

+ x�
2

+ z�
3

=

✓
z x � iy

x + iy �z

◆
(6.30)

which is a matrix that can be seen as converting our cartesian representation {x, y, z} into a
representation now still involving z but having convert the {x, y} components into two complex
vectors, {x + iy, x � iy} rotating in the x � y plane in opposite directions. But it can also shown
that rotations about the separate axes {x, y, z} can be written in terms of separate matrix Uk,
where k = {x, y, z}:

Uk(') = �o cos(') + i�k sin(') , k = {x, y, z} (6.31)

From the transformations of Eqn 6.30 using Eqn 6.31, it can be deduced (?) that there is a
correspondence between the matrices unitary matrices U and the orthogonal rotation matrices
R:

Ux('/2) =

✓
cos '/2 sin '/2

� sin '/2 cos '/2

◆
$

0

@
1 0 0
0 cos ' � sin '

0 sin ' cos '

1

A = Rx(') (6.32a)

Uy('/2) =

✓
cos '/2 i sin '/2

�i sin '/2 cos '/2

◆
$

0

@
cos ' 0 sin '

0 1 0
� sin ' 0 cos '

1

A = Ry(') (6.32b)

U z('/2) =

✓
ei'/2 0

0 e�i'/2

◆
$

0

@
cos ' � sin ' 0
sin ' cos ' 0

0 0 1

1

A = Rz(') (6.32c)

Therefore the general rotation in terms of the product of 3 ⇥ 3 orthogonal rotation matrices R
can be also be represented as the product of 2 ⇥ 2 unitary U :

R(↵, �, �) = Rx(↵)Ry(�)Rz(�) = Ux(↵/2)Uy(�/2)U z(�/2) = U(↵/2, �/2, �/2) (6.33)
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Or, in terms of Euler angles,

R(↵, �, �) = Rz(↵)Ry(�)Rz(�) = U z(↵/2)Uy(�/2)U z(�/2) = U(↵/2, �/2, �/2) (6.34)

Substituting in Eqns 6.32a- 6.32c, gives

U(↵/2, �/2, �/2) =

✓
ei⇠ cos ⌘ ei� sin ⌘

�e�i� sin ⌘ e�i⇠ cos ⌘

◆
(6.35)

where

⇠ = (� + ↵)/2 , ⌘ = �/2 , � = (� � ↵)/2 , (6.36)

in terms of the real angles as {⇠, ⌘,�} so the Cayley-Klein parameters are

a = ei⇠ cos ⌘ (6.37a)

b = ei� sin ⌘ (6.37b)

The matrix U can actually be written in higher dimensions whereupon it is written in terms
of the half-integer indeces {m, m0} as U j

mm0 where m = {�j, . . . , j} the above representations
correspond to j = 1/2 so that {m, m0} = {±1/2, ±1/2}. The Umm0 represent rotations of the
coordinate system. One can also write these in a form appropriate for rotations of functions.
These matrices are

Dj
mm0 = U j⇤

mm0 (6.38)

The matrices Dj
mm0 are called the Wigner matrices. These will be used later to rotate spherical

tensors.1

One can also work in the opposite direction (from 2D unitary to 3D orthogonal) and express
the general 3D rotation matrix R in terms of the Cayley-Klein parameters as

R =

0

@
(a⇤)2 �(b⇤)2 �2a⇤b⇤

�b2 a2 �2ab

ba⇤ ab⇤ aa⇤ � bb⇤

1

A (6.39)

Problems

6.1 Prove Eqn 6.28

6.9 Generators of the elements of SU(2)*

Consider the complex exponential of the Pauli matrices:

exp(i'�k) = �
0

cos ' + i�k cos ' (6.40a)

where the approximation follows from expanding the exponential as a MacLaurin series (Exer-
cise 6.2). The generators of the elements of SU(2) are

exp(ick�k/2) , k = {1, 2, 3} (6.41)

where ck are real. Thus the rotation in terms of the Euler angles Eqn 6.34 can be written

U = e�i�
z

�/2e�i�
x

�/2e�i�
z

↵/2 (6.42)
1 Need to check this Wigner section.
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Problems

6.2 Prove Eqn 6.41 Hint: Expand the exponential as a MacLaurin series, collect terms in dif-
ferent powers of the Pauli matrices, and use Eqn 6.28.

6.10 Rotations and the Cross Product: Generators*

Let’s begin by considering how the rotation matrices in Eqn 6.10, which are valid for any angle of
rotation, look for the special case of small rotations, i.e., {↵, �, �} ⌧ 1. Using the approximation
cos ✓ ⇡ 1 and sin ✓ ⇡ ✓ for ✓ ⌧ 1, the rotation matrices can be approximated to first order as

Rx(↵) ⇡

0

@
1 0 0
0 1 ↵

0 �↵ 1

1

A = I + ↵Ax (6.43a)

Ry(�) ⇡

0

@
1 0 �

0 1 0
�� 0 1

1

A = I + �Ay (6.43b)

Rz(�) ⇡

0

@
1 � 0

�� 1 0
0 0 1

1

A = I + �Az (6.43c)

where I is the identity matrix in R3 and we have defined the real matrices

Ax =

0

@
0 0 0
0 0 �1
0 1 0

1

A , Ay =

0

@
0 0 1
0 0 0

�1 0 0

1

A , Az =

0

@
0 �1 0
1 0 0
0 0 0

1

A (6.44)

Note that these matrices have the property that At = �A, which is called anti-symmetric. The
A matrices contain all the information necessary to generate infinitesimal rotations, and are thus
call the generators of the rotations. Let’s look a bit closer at the actions of the A’s by considering
how they operate on a general vector v = {vx, vy, vz}:

Ax · v =

0

@
0 0 0
0 0 �1
0 1 0

1

A

0

@
vx

vy

vz

1

A =

0

@
0

�vz

vy

1

A = êx ⇥ v (6.45a)

Ay · v =

0

@
0 0 1
0 0 0

�1 0 0

1

A

0

@
vx

vy

vz

1

A =

0

@
vz

0
�vx

1

A = êy ⇥ v (6.45b)

Az · v =

0

@
0 �1 0
1 0 0
0 0 0

1

A

0

@
vx

vy

vz

1

A =

0

@
�vy

vx

0

1

A = êz ⇥ v (6.45c)

where êk is just the unit vector along the k̂-direction. Thus, in general

Ak · v = êk ⇥ v (6.46)

These dot product of these matrices with a vector produces a cross product with the vector.
Thus these equations allow us to construct a general matrix representation for the cross product
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between two vectors

v =

0

@
vx

vy

vz

1

A , B =

0

@
Bx

By

Bz

1

A (6.47)

as a matrix equation:

v ⇥B = � · v (6.48)

where 2

� = BxAx + ByAy + BzAz =

0

@
0 �Bz By

Bz 0 �Bx

�By Bx 0

1

A (6.49)

The relationship between the infinitesimal generators and the cross product also allows a nice
construction of time dependent equations that involve rotations. This will become very useful
when we study the motion of the magnetization using the Bloch equation Chapter 14. From
Eqn 6.43, any rotation R(✏) of the vector v by ✏ = ✏ ê, i.e., a small angle ✏ ⌧ 1 about the axis
ê, can thus be written,

R(✏)v = v + ✏⇥ v (6.50)

From this we see that the incremental change �v in the vector v can be written

�v = R(✏)v � v = ✏⇥ v (6.51)

Here we see that there is indeed a connection between the cross product and rotations, as
advertised in Section 3.14: the incremental change in the vector when rotated an infinitesimal
amount about an axis of rotation ✏̂ is the cross product of that vector with ✏̂. 3

It is worth noting here that the components of the rotated vector are often written using the
Levi-Civita symbol "ijk used to express the components of the cross product (Eqn 3.38):

v
0

i = vi +
3X

j,k=1

"ijk✏jvk (6.52)

Eqn 6.52 appears in problems of rotation where the angle of rotation is assumed to be small,
such as in certain approaches to motion correction for (?).

6.11 Example: The Matrix Bloch Equation

The evolution of the magnetization in a gradient Gx in the x direction and a complex RF pulse
of the form 4

B
1

= B
1,x + iB

1,y (6.53)

2 signs in � are reversed from Liu
3 show explicitly here how the time rate of change of v is then constructed - see Goldstein (?)
4 from MJT slides.
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is
0

@
Ṁx

Ṁy

Ṁz

1

A =

0

@
0 Gxx �B

1,y

�Gxx 0 B
1,x

B
1,y �B

1,xx 0

1

A

0

@
Mx

My

Mz

1

A (6.54)

which can be written

Ṁ = �RM (6.55)

where

R = B
1,xAx + B

1,yAy + GxxAz (6.56)

6.12 Rotating Frames of Reference

The way in which we perceive a physical phenomenon can depend a great deal on where we are
when we observe it, or our frame of reference. Very often we are concerned with two reference
frames that move relative to one another in a very simple and predictable way. Imagine that we
are in outer space, not moving, and looking down on the spinning Earth at Mt Everest. As the
Earth spins below us, we see Mt Everest rotating. Now imagine that we wanted to measure its
height. Making such a measurement from that vantage point is complicated by the fact that our
target (Mt Everest) is moving. However, if we were instead standing on Earth (and in view of
Mt Everest, of course) such a measurement would be much easier because we have eliminated
the motion between us and Mt Everest. What we have done is move from the fixed frame of
reference of the Universe, to the rotating frame of reference of Mt Everest. It turns out that this
is a very close analogy with the situation in MRI, as we shall see in Chapter 14: The quantity
that is measured (the magnetization) is a vector that is always precessing (rotating) at a rate
that depends upon the strength of the magnet. Since all of our descriptions, manipulations, and
measurements take place in the presence of this main field, and thus in the presence of this
rotation, it is often very convenient to move to a reference frame that rotates at this rate (the
angular frequency).

An every-day example of a rotating coordinate system that is a very useful analogue of the
situation we find in NMR is the Merry-Go-Round, a platform that rotates in two-dimensions
about a vertical axis (a pole) (Figure 6.9). Let’s consider two boys who are trying to talk to
a girl sitting on one of the horses as the Merry-Go-Round rotates. The first boy is not on the
Merry-Go-Round, but standing on the grass outside it. Let’s call this the fixed frame (of refer-
ence) (Figure 6.9a), and designate him as bfix, and designate his Cartesian coordinate system
{xfix, yfix, zfix} . The second boy is riding on the Merry-Go-Round. Let’s call his frame of
reference the rotating frame (Figure 6.9b), designate him as brot, and designate his Cartesian co-
ordinate system {xrot, yrot, zrot}. Let’s notice the obvious stu↵ first: only the x and y components
of the two frames are di↵erent - the z-axis (the pole) is the same in both frames: zfix = zrot.
Furthermore, the boy on the Merry-Go-Round, brot, has the advantage in talking with the girl
because she is stationary in his frame. On the contrary, the boy in the fix frame, bfix, seeing the
girl rotating with respect to him, and this makes it di�cult to speak with her.

Now let’s put this into a mathematical language. Consider a the time rate of change of a vector
in some fixed frame, V , written in terms of its components v = {vx, vy, vz} along the Cartesian
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(a) Fixed frame of merry-go-round. (b) Rotating frame of merry-go-round.

Figure 6.9 The rotating frame and the Merry-Go-Round.

axes r̂ = {x̂, ŷ, ẑ} in the fixed frame:

V = vxx̂ + vyŷ + vzẑ = v · r̂ (6.57)

The time rate of change of V in the fixe frame is, by the chain rule,
✓

dV

dt

◆

fix

=

✓
@v

@t

◆

rot

· r̂ + v · @r̂

@t
(6.58)

The first term on the right hand side depends on how much v is changing with time, while the
second term depends on how the axes x̂ are changing with time. The unit vectors are of fixed
length so their time rate of change can only involve a rotation, which, from the last section, is
a↵ected by the cross product:

@r̂i

@t
= ! ⇥ r̂i (6.59)

where the magnitude of ! is the angular frequency of rotation of the unit vector and the direction
of ! is the axis about which rotation the rotation occurs. Substituting Eqn 6.59 into Eqn 6.58
shows that the rate of change of the vector in the fixed frame is related to the rate of change in
the rotating frame by the relationship

✓
dV

dt

◆

fix

=

✓
@V

@t

◆

rot

+ ! ⇥ V (6.60)

The total derivative dV /dt expresses the motion of V in the fixed frame and the partial derivative
@V /@t is the explicit dependence on time of V in the rotating frame. Notice that we can transform
to the rotating frame by rearrangement of Eqn 6.61:

✓
@V

@t

◆

rot

=

✓
dV

dt

◆

fix

� ! ⇥ V (6.61)

This relationship will play an important role in our representation of the motion of the magne-
tization vector in MRI (Section 14.3).

Notice also that the transformation to the rotating frame can also be a↵ected in a simple
and intuitively clear way using the matrix representation of the cross product introduced in
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Section 6.10. Putting Eqn 6.49 into Eqn 6.61 gives

✓
@V

@t

◆

rot

=

✓
dV

dt

◆

fix

� �V , � =

0

@
0 �!z !y

!z 0 �!x

�!y !x 0

1

A (6.62)

A very nice feature of this representation is that � is decomposible into its components along
the di↵erent axes (by virtue of Eqn 6.49) which makes transformation to rotating frames along
particular axes easy to do. For example, consider a set of axes that is rotating only along the ẑ

axis and we want to transform to the rotating frame. In this case ! = (!x, !y, !z)t and so from
Eqn 6.49

� = !zAz (6.63)

Then the transformation to the rotating frame is Eqn 6.62 with

� =

0

@
0 �!z 0
!z 0 0
0 0 0

1

A (6.64)

This is actually just the case we will encounter in the standard representation of the signal in
MRI, as we will see in Chapter 14.

6.13 A�ne Transformations

Because MRI is creating a spatial map of the body, there arise a class of spatial transformations
that play an important role in improving the fidelity of MR images whose quality has been
compromised by subject motion or imperfections in the magnetic fields used to create the images.
Imagine that a patient moves their head in between the acquisition of two images. If the head
is considered to be a solid object, this motion is called rigid body motion, and the movement
can be generally considered to be some mixture of translational motion (shifting the center of
the head from point x to x0) and rotational motion (rotating about the center point of the
head). Together, this motion is called rigid body motion. In later chapters we will see how well
control magnetic fields are applied to create spatial maps (images) of water in the body. We
will also see that if there are relative changes between the spatial encoding fields (“gradients”),
the size of the image along that direction will by scaled can be di↵erent along di↵erent spatial
directions, resulting in the image appearing stretched or contracted along certain directions.
More complicated field variations can produce an e↵ect that is called shearing , where all points
on one axis are left una↵ected but points away from the axis are shifted parallel to the axis by a
distance proportional to their perpendicular distance from the axis. This shearing transformation
does not change the volume of the region it is transforming.

In Figure 6.10 is shown an example of each of these transformations: translation (Figure 6.10a),
rotation (Figure 6.10b), scaling (Figure 6.10c), and shearing Figure 6.10d). These four transfor-
mations: translation, rotation, scaling, and shearing, together make up the class of transforma-
tions called a�ne transformations. The beauty of the matrix methods presented in Chapter 5
becomes apparent in the study of a�ne transformations, as each of these can be represented by
a 4 ⇥ 4 matrix in homogeneous coordinates (Section ??).5

5 Explain why homogeneous coordinates are used.
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(a) Translation. (b) Rotation. (c) Scaling. (d) Shearing.

Figure 6.10 A�ne transformations. (a) Translation by {�x,�y,�z} = {�.75,�.25,�.5}. (b) Rotation
by ✓ = ⇡/6 about the z-axis through the green point. (c) Scaling by .65 along the direction
{x, y, z} = {1, 1, 0} (i.e, along the line x = y). (d) Shearing by an amount � = �⇡/6 along the
x-direction {1, 0, 0}, normal to the y-direction {0, 1, 0} with the green point {0, 0, 1} along the z-axis
held fixed.

The general translation transformation is represented by the matrix

T =

0

BB@

1 0 0 x
0

0 1 0 y
0

0 0 1 z
0

0 0 0 1

1

CCA (6.65)

The general scaling transformation is represented by the matrix

S =

0

BB@

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 1

1

CCA (6.66)

Rotations can be constructed from the rotation matrices in Section 6.2 placed in the upper left
hand 3 ⇥ 3 matrix elements, with zeros in the other elements except for a 1 in the position a

44

.
For example, a rotation around z by ✓ is, using Eqn 6.10c,

R =

0

BB@

cos ✓ sin ✓ 0 0
� sin ✓ cos ✓ 0 0

0 0 1 0
0 0 0 1

1

CCA (6.67)

Shearing along x-axis by � can be represented as

H =

0

BB@

1 0 tan � � tan �

0 1 0 0
0 0 1 0
0 0 0 1

1

CCA (6.68)

6

And there is one more remarkable matrix fact that makes a�ne transformations very e�cient
to use practically: All four of the separate transformations represented by matrices above can

6 Say something about general shear transformations.
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be combined (or composed) into a single transformation matrix. Representing the process of
composition with the circle symbol, the general a�ne transformation can be written:

A = T � R � S � H =

0

BB@

a
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a
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a
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a
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a
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a
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34

0 0 0 1

1

CCA (6.69)

We will use these a�ne transformations in the correction methods in Section 38.3.

6.14 Interlude: Rigid body motion

Sometimes it is useful to consider a single coordinate system, for example the Cartesian coor-
dinates (Section 2.2), but allow the possibility that its origin and orientation change. This type
of transformation that occurs repeatedly in the context of MRI in the characterization of the
motion of the subject (e.g., a human head) during the scan process. In order to estimate and
correct for the e↵ects due to such motion, it is necessary to have a model for the motion that can
then be used to estimated the parameters of the motion and remove its e↵ects from the images.
A simple, and tractable, description of the motion begins with the assumptions that the head is
a solid object. By this we mean that points in the object do not change relative to one another.
Imagine a marble bust, for instance. This is not the case, for example, with a piece of Jello, in
which the internal points do change locations relative to one another. We say that Jello deforms.
Unfortunately, the brain is more like Jello than marble, since not only does the head position
move, but the brain pulsates (via the CSF pressure changes with heart beat) and thus deforms.
This is a much more complicated problem, and we will not address it. But let’s look at the e↵ect
of the motion of a solid object, which is called rigid body motion.

Pick up any solid object near you and extend your arm and twist your wrist, and watch the
position of the object. It should be immediately clear that the motion of the object is comprised
two types of motion. The first is the movement of its center from one location to another as
your arm extends. This is called translation. The second is the motion about its center as your
wrist turns. This is our familiar rotation. The order of these two transformations is independent.
That is, we can first rotate the object, the translating it, or vise versa, and the final position
and orientation are the same. But notice that the rotation of the object occurs relative to its
internal coordinates. That is, we rotate the object about its center (or center of mass if it is an
asymmetric object). The translation, on the other hand, occurs relative to the origin located at,
say, the shoulder. This problem thus has two natural coordinate systems: One with an origin at
our shoulder (so that our arms length is the distance from the origin, and thus the translation
distance) and a coordinate system that sits within the object and is the one about which it
rotates. The translation and rotation of the object can thus also be seen as the translation and
rotation of two Cartesian coordinate system relative to one another. These are critical distinctions
to be made if one is to describe these mathematically, which we do now. To put this on a firm
mathematical footing, the location of a point on the rigid body can be written

x = xr + R(↵, �, �)xo (6.70)

where xr is a reference point on the body (say, its center of mass), xo is a point on the body
with respect to the reference point xr, and R(↵, �, �) is the 3 ⇥ 3 rotation matrix. Thus xr is
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(a) Rigid body motion of a solid square
whose center is at the location x0 ⌘
{x0, y0} (which in this case is x =
{.5, .5, .5}). The cube is rotated about
its center {.5, .5} by 45� and then trans-
lated from x ⌘ {x0, y0} to x+dx where
dx ⌘ {dx, dy} = {2, 2}.
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(b) Rigid body motion of a solid cube
whose center is at the location x0 ⌘
{x0, y0, z0} (which in this case is x =
{.5, .5, .5}). The cube is rotated about its
center by the Euler angles (Section ??)
{�, ✓, } = {⇡/4,⇡/3,⇡/2} and then
translated from x ⌘ {x0, y0, z0} to x +
dx where dx ⌘ {dx, dy, dz} = {2, 2, 2}.

Figure 6.11 Rigid body motion in (a) 2D of a square (b) 3D of a cube.

a translation of the object from the origin, while R(↵, �, �)xo rotates the object with respect to
the coordinates of the body. This is illustratied in Figure 6.11.

Suggested Reading
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This book is good.


