
2 Coordinate systems

2.1 Motivation

Coordinates systems play a crucial role in the way physical systems are described. Complicated
problems can often be greatly simplified or be made more intuitively clear by a judicious choice
of coordinate system. In addition, the way quantities are represented in these systems can also
make a tremendous di↵erence in the ease with which calculations are made and physical insight
is obtained. We begin by describing the two coordinates systems familiar in everyday life from
describing locations in 3-dimensional space: the Cartesian and the spherical coordinate system.
It turns out that these are two of the most important coordinate systems in MRI, along with
their 2-dimensional versions, the rectangular and polar coordinate systems.

2.2 Cartesian coordinates

Specifying ”where” something is located is something that we are constantly doing in everyday
life. Often by “where” we mean “where in space”. Consider, for example, the location of the
baseball on the baseball field shown in Figure 2.1a. This is most easily described by defining
three perpendicular axes along the first base line (x), the third base line (y), and the vertical
through home plate (z) and the locations are described by the three parameters, three spatial
coordinates, {x, y, z}. These three axes are said to form the basis for the coordinate system.
The location of the intersection of the three axes (home plate) is called the origin and defined
to be the point {0, 0, 0} and is the point relative to which the other points are measured. This
particular coordinate system, defined by three perpendicular axes that intersect at the origin is
called the Cartesian coordinate system. An important quality of the Cartesian coordinate system
is that the axes {x, y, z} are perpendicular, or orthogonal , to one another. This has the important
e↵ect that if we move along one of the coordinate axes, our location as specified by the other
coordinate axes remains unchanged. If the ball in Figure 2.1a were to move only along the y-axis
for a distance �y, its location would then be {xb, yb + �y, zb}. The values of the other two
coordinates do not change. This independence can greatly simplify the description or analysis
of a system that is changing as a function of the coordinates. A coordinate system with this
property is called an orthogonal coordinate system. The utility of such a coordinate system is
that the location {xb, yb, zb} of the baseball in 3D space can be described by the independent
locations along each of these axes. This is shown in Figure 2.1. 1

There is another more subtle but important concept besides the relative orientation of the axes
that is needed to completely describe the Cartesian coordinate system, and that is the directions
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(a) Cartesian coordinate system: The location of a baseball in
3D space described by the independent Cartesian coordinates
{x

b

, y

b

, z

b

}.

(b) Representation of a 3D point p in a Cartesian coordinate
system. Its location {x1, y1, z1} is described by the distance
along each of the three perpendicular axes {x,y,z}.

Figure 2.1 The Cartesian coordinate system.

of the positive and negative directions. In Figure 2.1a the positive directions of {x, y, z} are
along first base, third base, and above home plate, respectively. But this is actually arbitrary.
We could have defined the vertical as the �z direction, for example. This distinction will make
a di↵erence when we discuss concepts such as rotations, however, so we need a way to describe
and categorize this concept. The usual way to do this is to imagine an open right hand pointing
along the positive x-axis. If you curl your fingers, they move towards the positive y-axis, and the
thumb is pointing vertically. If this vertical axis is called the positive z-axis, then this coordinate
system is called a right-handed coordinate system. If this vertical axis is called the positive �z-
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(a) Parameters of the spherical coordi-
nate system.

(b) The location of UCSD on the globe
is most easily described in spherical co-
ordinates.

Figure 2.2 Spherical coordinate system. The spherical system is composed of {r,#,'}. Polar angle #

describes that angle of a vector from the the z-axis and azimuthal angle ' describes the angle in the
x� y plane from the x-axis. The radius r is the distance of the vector tip from the origin {0, 0, 0},
which is just the length of the vector.

axis, then this coordinate system is called a left-handed coordinate system (because if you have
your left hand open along x and want to curl it along the same positive y direction, you’ll need
your thumb pointing down.)

In 2-dimensions, the Cartesian coordinate system is called the rectangular coordinate system.
This system is useful for describing locations of objects in a plane laid out in a grid, such as a
building on a city map, or pixels in an image. It is also the pattern of data samples collected in
the majority of MRI acquisitions (Figure 2.4a).

2.3 Spherical coordinates

Another important coordinate system is the spherical coordinate system, which is familiar be-
cause we live on an approximately spherical object - the Earth (Figure 2.2b). This coordinate
system is described by the three parameters {r, #, '}, the radius, the polar angle, and the az-
imuthal angle, respectively (Figure 2.2a). These parameters are thus the basis for the spherical
coordinate system. The lines are of constant � are just the familiar lines of latitude and the the
lines are of constant ✓ are the lines of longitude. This is shown in Figure 2.2. 2 The spherical co-
ordinate system is also an orthogonal coordinate system. If we consider the Earth to be a perfect
sphere, as we move on its surface we are at a constant radius (the distance from the center of
the Earth). We can move along a line of constant longitude without changing the latitude, and
vise versa. We can also rise above the surface of the earth in the radial direction at a particular
point on the surface defined by a particular set of angle {✓, �}.

The latitude and longitude lines on a globe describe the angle up from the equator and the angle

2 graphic from http://www4.wittenberg.edu/maxwell/CoordinateSystemReview.pdf
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away from the prime meridian, respectively. The equator divides the Earth into two hemispheres
(northern and southern) about the origin of the latitude lines, while the prime meridian divides
the Earth into two hemisphere (eastern and western) about the origin of the longitude lines.
The prime meridian therefore defines the origin of the azimuthal angle ' and the origin of the
elevation angle is the equator. Notice that instead of specifying the angle from the equator up to
the North Pole, we could equivalently defined the angle #, called the polar angle or colatitude,
in the opposite direction, from the North Pole down to the equator. The elevation angle is then
just 90� � #. In the definitions of spherical coordinate systems it is common to use the polar
angle. We can thus describe our three-dimensional space by the three coordinates {r, #, '}, the
radius, the azimuthal angle, and the polar angle, respectively.

2.4 The relationship between Cartesian and spherical coordinates

It is important to understand that the di↵erent coordinate systems can be just ways to describe
the same space of parameters. We choose one over another because it makes the description
easier, more intuitive, or economical. But if two coordinates systems that describe the same
space (for example, the Cartesian and spherical descriptions of 3-dimensional space), there must
be a way to mathematically describe one set of coordinate in terms of the others. Indeed, we can
write the Cartesian coordinates {x, y, z} in terms of the spherical coordinates {r, #, '}:

x = r sin # cos ' (2.1a)

y = r sin # sin ' (2.1b)

z = r cos ' (2.1c)

And we can write the spherical coordinates in terms of the Cartesian coordinates as

r =
p

x2 + y2 + z2 (2.2a)

# = arctan

 p
x2 + y2

z

!
(2.2b)

' = arctan (y/x) (2.2c)

Such coordinate transformations will be discussed in greater detail in Section ??.

2.5 Polar coordinates

The two dimensional (planar) version of the the Cartesian coordinate system is the rectangular
coordinate system and the two dimensional version of the spherical coordinate system is the polar
coordinate system. One can think of it as the coordinates in the spherical system if we just stay at
the equator (# = 90�). With the ' origin chosen along the +x direction, a typical representation
of the polar coordinate system is shown graphically in Figure 2.3b where the angles are shown
(arbitrarily) at 30� increments.

The rectangular coordinates in terms of the polar coordinates is

x = r cos ' (2.3a)

y = r sin ' (2.3b)
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(a) Polar coordinates in terms of rectangular coordinates.
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(b) Representation of the polar coordinate sys-
tem shown at 30� increments, with the ' origin
at the +x axis.

Figure 2.3 The polar coordinate system

and the polar coordinates in terms of the rectangular coordinates is

r =
p

x2 + y2 (2.4a)

' = arctan (y/x) (2.4b)

The polar coordinate system is important when we discuss complex numbers because it is
convenient for the representation of problems where magnitude and phase are important. Gen-
erally, polar coordinate systems are useful when a problem has some structure where there is
a “center” from which a radius can be defined in two-dimensions. For example, as we will see
in later chapters, the raw 2D MRI data that is collected from the scanner (k-space data) has
an inherent cylindrical symmetry that is utilized by certain acquisition schemes. So, while most
MRI data is collected on a Cartesian grid (Figure 2.4a), data may also be collected along the
radial direction with di↵erent angular increments (Figure 2.4b). Such an acquisition scheme is
thus naturally described in terms of polar coordinates.

2.6 Generalizations and higher dimensions

The coordinate system descriptions have focused on the familiar spatial dimensions but these
concepts are actually very general. Imagine, for example, a classroom of students of di↵erent
heights h, masses m, hair lengths l, and body temperatures T , all in di↵erent locations {x, y, z},
all moving around at a function of time t. This describes an eight dimensional system where all
the coordinate {x, y, z, t, h, m, l, T} are independent and can be desribed by an eight-dimensional
Cartesian coordinate system. These generalization can be facilitated by more compact mathe-
matical descriptions, as we will see in our discussion of vectors and tensors. (Or, perhaps they’re
not independent. Might hair length be related to temperature?)
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(a) Cartesian grid.
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(b) Polar grid.

Figure 2.4 Sampling schemes can use di↵erent coordinate systems. Points on a Cartesian grid are shown
in blue, and those on a (planar) sphereical grid are shown in red.
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3.1 Motivation

A great deal of the work of physics is trying to succinctly describe quantitative aspects of physical
phenomena. This is greatly facilitated by mathematical constructs that allow concise physical
descriptions. One such construct is the vector which allows the concatenation of multiple (in
fact, an infinite number) of parameters into a single object which has well defined mathematical
properties, and the additional benefit of illuminating geometrical interpretations.

3.2 Scalars

A scalar is a just a real number. Scalars satisfy the properties of being associative for addition
and multiplication

(a + b) + c = a + (b + c) (3.1a)

(ab)c = a(bc) (3.1b)

for scalars a, b, c and commutative for addition and multiplication

a + b = b + a (3.2a)

ab = ba (3.2b)

It is useful to think of a scalar as a number that scales the length of a vector, as we shall see.
A useful shorthand notation that has been invented for describing that a number a is a real

number is a 2 R where R stands for the real numbers and 2 mean ”is an element of”. There is
another notation that is useful in defining where a number lies relative to numbers. There are
really just four options: Either x lies up to and includes or does not include a and/or b at its
limits. This notation is the use a parenthesis “(” or “)” to denote that x does not include the
limiting values, or square brackets “[” or “]” to denote that it does. The four choices are thus

(a, b) ⌘ a < x < b (3.3a)

[a, b) ⌘ a  x < b (3.3b)

(a, b] ⌘ a < x  b (3.3c)

[a, b] ⌘ a  x  b (3.3d)

This notation is just a convenient shorthand.
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3.3 Simple vectors

Consider again the location of the baseball in Figure 3.1 relative to the origin (home plate) which
we can visualize by drawing an arrow from home plate to the baseball. This arrow has a length
(or magnitude) and a direction and is described by a mathematical construct called a vector .
The initial point of this vector is the origin {0, 0, 0} and the final points is the location of the
baseball in terms of the scalars (real numbers) {xb, yb, zb}. Vectors are implicitly assumed to
have their tail (starting point) at the origin {0, 0, 0} and are identified by their end points in the
form of a column vector. The baseball the location in the Cartesian axes is represented by the
vector v (vectors are typically signified by boldface type) represented by the notation:

v ⌘

0

@
xb

yb

zb

1

A (3.4)

where the vector components {vx, vy, vz} the distance along each of the separate (basis) axes
({x, y, z}) the ball is located. Two equivalent, but slight more general, ways of writing Eqn 3.4
use the notation of the vector with subscripts to denote the component of the vector along the
basis axes {xb, yb, zb} = {vx, vy, vz} or by the component number {x, y, z} = {1, 2, 3}. Hence,

v ⌘

0

@
vx

vy

vz

1

A =

0

@
v
1

v
2

v
3

1

A (3.5)

The latter form is particularly useful when we generalize vectors to higher dimensionals. For
example, a set of n data points {d

1

, d
2

, . . . , dn} from a single voxel time course in an FMRI
experiment can be represented by an n-dimensional vector.

d ⌘

0

BBB@

d
1

d
2

...
dn

1

CCCA
(3.6)

The “space” is now not as obvious as 3-dimensional space–it’s the n-dimensional “signal space”–
but the mathematical representation remains the same.

A useful shorthand notation that has been invented for describing that a vector v is composed
of real numbers and of dimension n is v 2 Rn.

3.4 The vector transpose

Interchanging the rows and the columns of a vector v is called the transpose of v, denoted vt.
For example, the transpose of Eqn 3.6 is

dt ⌘ (d
1

, d
2

, . . . , dn) (3.7)

The transpose of a column vector is a row vector, and vise versa. A column vector of length n

has n rows, whereas a row vector of length n has n columns. Whether one uses a column vector
or a row vector to represent a set of numbers of often arbitrary and a matter of convenience
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Figure 3.1 The Cartesian basis vectors.

or convention. What is not arbitrary is the relationship between the two, and the mathematical
rules for their manipulation. A more general way to think about the transpose is that the columns
are exchanged with the rows.

3.5 Basis vectors

There are actually three other vectors shown in Figure 3.1 which are along the basis axes and of
equal length (the distance from home plate to first base). If we define this length to be the unit
of length in this “space” (the stadium) then all of these are vectors of length 1 - and are called
unit vectors, and denoted by a hat symbol .̂ These unit vectors pointing along the basis axes are
called basis vectors, which are typically written with the symbol e and a subscript to denote the
basis component. Thus our baseball field basis vectors are:

ex = x̂ ⌘

0

@
1
0
0

1

A , ey = ŷ ⌘

0

@
0
1
0

1

A , ez = ẑ ⌘

0

@
0
0
1

1

A (3.8)

and are shown in Figure 3.1. Be cognisant of the fact that basis vectors are always unit vectors,
but not all unit vectors are basis vectors, of course.

Similarly, for the spherical coordinate system of Section 2.3 there are basis vectors along the
basis axes er = r̂, e✓ = ✓̂, e� = �̂. These are shown in Figure 2.2a.

One comment on notation. In situations involving well-known coordinate systems such as the
Cartesian and spherical coordinate systems, it is common to express the basis vectors in terms
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of the coordinates they describe, and with a hat, such as {x̂, ŷ, ẑ} and {r̂, ✓̂, �̂}, rather than in
the form ex, etc, because it is more intuitive and gives less cluttered equations.

3.6 Vector addition, subtraction, and scalar-vector multiplication

Two basic properties of vectors is that multiplication of a vector by a scalar is equivalent to
multiplying each component of that vector by that scalar. For example, multiplying the vector
Eqn 3.5 by the scalar a gives

av =

0

@
a v

1

a v
2

a v
3

1

A (3.9)

Consider a two-dimensional in the Cartesian basis with scalar coe�cient vx and vy multiplied by
a scalar a:

av = avxx̂ + avyŷ (3.10)

Each coe�cient is just scaled (e.g., stretched or shrunk) by the a as shown in Figure 3.2a for
vx = vy = 1.

When two vectors are added (or subtracted), this is done by adding (or subtracting) their
individual components:

u + v =

0

@
u

1

+ v
1

u
2

+ v
2

u
3

+ v
3

1

A , u � v =

0

@
u

1

� v
1

u
2

� v
2

u
3

� v
3

1

A (3.11)

From these two simple facts, we see that the vector Eqn 3.4 representing the baseball’s location
can be written:

v = xbx̂ + ybŷ + zbẑ (3.12)

Example 3.1 Show Eqn 3.12

Solution

From Eqn 3.9 in the first step

v = xb

0

@
1
0
0

1

A+ yb

0

@
0
1
0

1

A+ zb

0

@
0
0
1

1

A =

0

@
xb

0
0

1

A+

0

@
0
yb

0

1

A+

0

@
0
0
zb

1

A =

0

@
xb

yb

zb

1

A

and using Eqn 3.11 in the second step.

Consider two vectors in the three-dimensional Cartesian basis:

u = uxx̂ + uyŷ + uzẑ (3.13a)

v = vxx̂ + vyŷ + vzẑ (3.13b)
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(a) Vector scalar multiplication:
av = ax̂+ aŷ

(b) Vector addition:
w = u+ v = ax̂+ bŷ

(c) Vector subtraction:
w = u� v = ax̂� bŷ

Figure 3.2 Vector math for some simple vectors. (change to x̂, etc!)

Adding and subtracting these vectors gives

u + v = (ux + vx)x̂ + (uy + vy)ŷ + (uz + vz)ẑ (3.14)

u � v = (ux � vx)x̂ + (uy � vy)ŷ + (uz � vz)ẑ (3.15)

The coe�cients along the basis vectors just add or subtract. This is shown in Figure 3.2b and
Figure 3.2c. Geometrically, adding two corresponds to putting the base of the second vector at
the tip of the first vector, and drawing a line from the base of the first vector to the tip of the
second vector.

3.7 The magnitude and angle of a vector

The vector magnitude, or length, is the distance from its base to its tip, and denoted |v|. In the
Cartesian basis, this is just the generalization of the familiar Pythagorean Theorem, the square
root of the sum of the squares of the components vi along each axis êi:

|v| =

vuut
nX

i=1

v2

i (3.16)

For the simple examples in Cartesian coordinates of a two dimensional vector in Figure 3.3a
v = ax̂+bŷ, the magnitude is |v| =

p
a2 + b2 and for the three-dimensional vector in Figure 3.3b

v = ax̂+ bŷ + cẑ, the magnitude is |v| =
p

a2 + b2 + c2 The simplicity of expression Eqn 3.16 is
a result of the fact that the Cartesian coordinate system in an orthogonal coordinate system, so
that the components of the vector can be described by the independent components along the
separate (and orthogonal) axes.

The angle, or direction, of a vector must be defined relative to some axis, which is usually chosen
by convention. For the simple example of a two dimensional vector in Cartesian coordinates
Figure 3.3a v = ax̂+ bŷ, the angle is typically measured relative to the x-axis, and is given from
simply trigonometry to be

� = tan�1(b/a) (3.17)

where tan�1 is the arctangent function. For the three-dimensional vector in Figure 3.3b, two
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(a) A two-dimensional vector in Carte-
sian coordinates. The magnitude is |v| =p
a

2 + b

2 and angle is ✓ = tan�1(b/a).

(b) A three-dimensional vector in Carte-
sian coordinates. The magnitude is |v| =p
a

2 + b

2 + c

2, the azimuthal angle is
� = tan�1(b/a), and the polar angle is
✓ = tan�1(c/a). (fix figure!)

Figure 3.3 Vector magnitude and angle.

angles can be used to define the orientation of the vector: the angle from the ẑ director, called
the polar angle, and the angle in the x � y-plane from the x̂ axis, called the azimuthal angle.
These angles are given by

✓ = tan�1(c/a) (3.18a)

� = tan�1(b/a) (3.18b)

The notation {✓,�} for the polar and azimuthal angle, respectively, is the standard in the physics
literature. In the mathematical literature, these are often swapped, so it is prudent to pay at-
tention to the definitions in each context.

3.8 Interlude: The Unit Vector

A very useful vector is the vector of unit length, called a unit vector . In fact, we have already
used unit vectors in Section 3.5 to define our coordinate axes. Unit vectors are very useful for
this purpose because, for example, in an orthogonal coordinate system such as the Cartesian
system, the component of a vector along any direction can be expressed as some scalar times the
unit vector along that direction, as we saw in Section 3.6. Now that we have defined the vector
magnitude, it is clear that we can take any vector v, divide it (or normalize it) by its magnitude
|v|, to produce a unit vector v̂ in the diretion of v:

v̂ =
v

|v| (3.19)

The hat symbol is the standard notation for a unit vector.
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Figure 3.4 The Law of Cosines.

3.9 The angle between two vectors: The Law of Cosines

The Law of Cosines states that the length of the vector c is related to the length of the other
two sides a and b, and the angle ✓ between them by1

|c|2 = |a|2 + |b|2 � 2 |a| |b| cos � (3.20)

This is shown in Figure 3.4.

3.10 Multiplication of vectors: The Dot or Inner Product

There are actually several rules for multiplying together two vectors. The simplest, and most
ubiquitous, is the rule that the rows of one are multiplied by the columns of the other, and the
results are added together. This only has meaning if the number of rows in the first is equal
to the number of columns in the second. This is called the dot product or inner product of two
vectors, and is symbolized by a dot between the two vectors: u ·v. Consider two three-component
vectors, the row vector u = {u

1

, u
2

, u
3

} and the column vector v = {v
1

, v
2

, v
3

}t. The number of
columns in u is equal to the number of rows in v and so we can form the dot product between
the two:

u · v ⌘ (u
1

u
2

u
3

)

0

@
v
1

v
2

v
3

1

A = u
1

v
1

+ u
2

v
2

+ u
3

v
3

=
nX

j=1

ujvj (3.21)

In Section 3.7 the vector magnitude as found by summing the squares of the components along
the separate axes, adding them, then taking the square root (Eqn 3.16). A compact way of
writing this is to notice that if we set u = vt in Eqn 3.21 then we can rewrite the magnitude of
v (Eqn 3.16) in the form

|v| =
p
vt · v (3.22)

One very common but potentially confusing shorthand notation is the elimination of the dot
when writing the dot product so that vt · v is written vtv.

1 I think this equation is getting closer than Eqn ?? was, but I still don’t think there should be a minus sign.
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We get an interesting and useful result if we consider the magnitude of the di↵erence between
two vectors w = u � v:

|w|2 = |u � v|2 = |u|2 + |v|2 � 2u · v (3.23)

This must be the same as the Law of Cosines (Eqn 3.20) from which we can conclude that another
form of the dot product is

u · v = |u| |v| cos ✓ (3.24)

where ✓ is the angle between the two vectors.

An illuminating example is the dot product between the basis vectors Eqn 3.8 for the Cartesian
basis:

x̂t · ŷ = ŷt · ẑ = ẑt · x̂ = 0 (3.25)

which, from Eqn 3.24, means that the angle between any of these vector is 90�. In other words,
they are orthogonal. This we already knew from Figure 3.1 but now we have a concise mathemat-
ical statement of that fact. In fact, a vanishing dot product between two vectors is synonymous
with saying they are orthogonal. Also note the important fact that the order of the vectors does
not matter in the dot product: xt · yt = yt · xt.

The dot product is maximized when cos ✓ = 1, or ✓ = 0, i.e., when the vectors are collinear. It
vanishes then the cos ✓ = 0, or ✓ = 90�, i.e., when the vectors are perpendicular.

Problems

3.1 Show that the basis vectors {r̂, ✓̂, �̂} in the spherical coordinate systems are orthogonal,

i.e., that r̂t · ✓̂ = ✓̂
t
· �̂ = �̂

t
· r̂ = 0

3.11 Geometry of the dot product: Orthogonal Projections

The equation Eqn 3.24 can be rearranged into the form

u · v

|v| = u · v̂ = |u| cos ✓ (3.26)

which says that the dot product of u with v̂ is just the component of u along v̂, as shown in
Figure 3.5. This is called the orthogonal projection of u onto v̂ because the di↵erence vector
u�u · v̂ (the dotted line in Figure 3.5, called the orthogonal complement ) is always orthogonal
to v. Thus the dot product can be viewed as the orthogon projection of u onto v̂, scaled by the
magnitude of v. Note that since the dot product is commutative for vectors, we can exchange u
with v for the above discussion. The geometry of the dot product is a very useful concept in many
applications, such as in data analysis where the estimation of model parameters often involves
the dot product of the data vector with the model vector. In this case, the signal “explained”
by the data involved the orthogonal projection of the data onto the model, and the error is the
orthogonal complement.
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Figure 3.5 The orthogonal projection.

3.12 Interlude: The Dot Product and Equations

Vector notation and the dot product provide a very convenient and concise way to write equations.
Consider the simple equation of a line:

y = ↵ + �x (3.27)

This can be written in a more compact form by defining the vectors

↵ ⌘
 

↵

�

!
f ⌘

✓
1
x

◆
(3.28)

The line can then be written dot product between these two vectors

y =
⇣

↵ �
⌘✓ 1

x

◆
= ↵ 1 + � x (3.29)

where components of like colors are multiplied together. That is

y = ↵tf (3.30)

(where we’ve purposefully eliminated the dot to start adjusting you to the aforementioned con-
vention) or, in component form,

y =
2X

i=1

↵ifi (3.31)

These representations (Eqns 3.30- 3.31) become a powerful notation when we work with equations
of very large dimensions where writing out the individual terms becomes cumbersome and often
not particularly illuminating, whereas the dot product representation of the equation does not
change.

3.13 The Cross Product

Another important way to multiply two vectors is illustrated by the physical example in Fig-
ure 3.6a where a weathervan is oriented along the ẑ direction such that the East is oriented along
x̂ and the South is oriented along ŷ. If there is a wind from the North that pushes on the East
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Figure 3.6 The vector cross product.

side, the weathervane rotates about ẑ by angle angle ✓ towards the South (ŷ) axis. The vector
product that captures the fact that rotating a vector along x̂ toward one along ŷ rotates the
weathervane about the ẑ is the cross product .

The definition of cross product between two vectors u and v is

w = u⇥ v = |u| |v| sin ✓ ŵ (3.32)

The result of the cross product is another vector that points in direction orthogonal to both
the vectors that form it. The magnitude of the resulting vector is maximized when sin ✓ = 1, or
✓ = 90�, i.e., when the vectors are perpendicular. It vanishes then the sin ✓ = 0, or ✓ = 0�, i.e.,
when the vectors are collinear.

One very important feature to remember about the cross product is that it must be defined
within a particular coordinate system. This is most easily demonstrated by looking at the cross
product of the unit vectors that define a coordinate system. Consider the unit vectors {x̂, ŷ, ẑ}
that define Cartesian the coordinate system shown in Figure 3.6a. They are orthogonal, so
sin ✓ = 1 in Eqn 3.32 and thus x̂ ⇥ ŷ = ẑ. But if the coordinate system was defined such
that x̂ and ŷ were swapped, this would be equivalent to reversing the order of this product in
the standard Cartesian coordinate system to ŷ ⇥ x̂ = �ẑ and the weathervane turns in the
opposite direction. A nice pnemonic for remembering this is called the right hand rule, shown
in Figure 3.6b. Pointing your index finger along x̂ and your middle finger along ŷ will result in
your thumb being pointed along ẑ. Reversing the order will result in your thumb pointing along
�ẑ. Because changing the order of the multiplication changes the sign of the result, the cross
product is said to be anti-commutative.

Listing the cross products of all three of the Cartesian basis vectors allows us to introduce
another useful notational convenience:

x̂⇥ ŷ = ẑ , ŷ ⇥ ẑ = x̂ , ẑ ⇥ x̂ = ŷ (3.33a)
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Figure 3.7 The geometry of the vector cross product. The cross product is a vector whos magnitude is
the arear of the parallelogram defined by the two vectors, and whose direction is perpendicular to the
plane defined by the two vectors. (change vectors to u and v).

Similarly,

ŷ ⇥ x̂ = �ẑ , ẑ ⇥ ŷ = �x̂ , x̂⇥ ẑ = �ŷ (3.34a)

These sets of equations is often more compactly stated by noting that successive equations can
be obtained with the substitution x ! y, y ! z, z ! x at successive steps. Each element is
substituted for the next element, until it hits the last element, in which case is cycles to the front
of the line, so to speak. This is called cyclic permutation.

The components of the cross product c = u⇥ v can also be written in a useful way as

ci =
3X

j,k=1

"ijkujvk (3.35)

where

"ijk =

8
>><

>>:

1 cyclic permutations (i,j,k unique)

�1 anti-cyclic permutations (i,j,k unique)

0 i,j,k not unique

(3.36)

is called the totally anti-symmetric Levi-Civita symbol . It is only non-zero if the i, j, k are unique:
i 6= j 6= k. A cyclic permutation is one in which each index is changed into the following index:
i.e., i ! j, j ! k, k ! i. An anti-cyclic permutation is one in which each index is changed
into the preceding index: i.e., i ! k, j ! i, k ! j. For example, "

231

= 1, "
213

= 0, "
131

= 0.
We will encounter the form Eqn 3.35 repeatedly in the theory of rotational transformations in
Section ??.

3.14 Geometry of the cross product: parallelogram areas

There is a nice geometrical interpretation of the cross that is shown in Figure 3.7. The cross
product of two vectors u and v is a vector whose magnitude is the area of the parallelogram
defined by u and v and whose direction is perpendicular to the plane defined by u and v.
The geometrical interpretation of the cross product magnitude as an area rarely comes up in
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Bo
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Figure 3.8 A nuclear spin with magnetic moment µ in a static magnetic field B0 experiences a torque
⌧ = µ⇥B0 causing precession of µ about B0.

its application to MRI. Much more important is the geometrical insight of the direction of the
resultant vector and its application to .

2

3.15 Interlude: The Cross Product, Spin, and Torque

Two very important physical quantities that are ubiquitous in MRI and involve the cross product
are the angular momentum and torque. In classical mechanics, a particle of mass m rotating at
a fixed radius r about the origin with velocity v has angular momentum

L = r ⇥ p (3.37)

where the linear momentum is p = mv. The torque is the time rate of change of the angular
momentum:

⌧ =
dL

dt
= r ⇥ F (3.38)

where r is radius and the force is F = dp
dt = mdv

dt = ma where a is the acceleration.
The torque equation is central to the process of magnetic resonance because a nuclear spin

(e.g., a proton in a water molecule) with magnetic moment µ in a magnetic field B experiences
a torque ⌧ = µ⇥B. For example, in a static magnetic field B

0

, the torque ⌧ = µ⇥B
0

causes
precession of µ about B

0

, as shown in Figure 3.8. This will be discussed in greater detail in
Chapter 13.

Suggested reading

2 Should we mention the vector triple product?



4 Complex numbers

4.1 Real, Imaginary, and Complex numbers

One of the properties we know about real numbers is that their square must be greater than or
equal to zero (non-negative). So if the number a is real (i.e., a 2 R) then a2 � 0. An imaginary
number , on the other hand, has a squared value that is less than or equal to zero. To construct
such a number it was necessary to invent1 the quantity i =

p
�1. Multiplying a real number a

by i then gives an imaging number z = ia whose squared value is z ⇤ z = (i ⇤ i) ⇤ z2 = �z2.
Complex numbers are a mathematical construct that facilitate a simple and compact method for
describing rotations. A complex number is just the sum of a real and an imaginary number. So
from two real numbers {a, b} 2 R the complex number z = a + ib can be constructed where a

and b are called the real and imaginary components of z. Complex numbers are denoted by the
symbol C so z 2 C.

The rule for adding two numbers is that the real parts are added together and the imaginary
components are added together. Thus for two complex numbers z

1

= a
1

+ ib
1

and z
2

= a
2

+ ib
2

,
their sum is

z
1

+ z
2

= (a
1

+ a
2

) + i(b
1

+ b
2

) (4.1)

Multiplication gives

z
1

z
2

= (a
1

+ ib
1

)(a
2

+ ib
2

) = (a
1

a
2

� b
1

b
2

) + i(a
1

b
2

+ b
1

a
2

) (4.2)

where note the minus sign arises from i ⇤ i = �1.
The representation of a two-dimensional vector v = ax̂ + bŷ in the Cartesian (x � y) plane

Figure 4.1a can also be displayed in terms of the complex vector z = a + ib if the x axis is
associated with <[z] = a, where <[] means the the real component of z, and the y axis is
associated with =[z] = v, were =[] means the imaginary component of z. This is called the
complex plane, and shown in Figure 4.1b.

4.2 The magnitude and phase

Figure 4.1a and Figure 4.1b are two representations of the same vector v, and so both must
produce the same length kvk of the vector. For the Cartesian representation we already from
Chapter 3 that this is kvk =

p
a2 + b2. This requires that the definition of the magnitude of a

complex vector be:

kzk =
p

z⇤z (4.3)

1 Invented by the Italian mathematician Rafael Bombelli (1526–1572).
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v = ax̂ + bŷ z = a + ib
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v = ax̂ + bŷ z = a + ib
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(b) A vector in the complex plane.

Figure 4.1 The representation of a vector in the Cartesian (x� y) and complex planes.

where

z⇤ = a � ib (4.4)

is called the complex conjugate of z. With this definition

z⇤z = (a � ib)(a + ib) = a2 + b2 (4.5)

so that kzk =
p

a2 + b2 as required. The length of z is also called the magnitude of z.
Inspection of Figure 4.1b suggests another representation of complex vectors. The vector is

characterized by two parameters: the vector magnitude kvk and the angle ✓, also called the
phase, which can be expressed by writing out the components as

v = kvk cos ✓r̂ + kvk sin ✓î (4.6)

where r̂ and î are the unit vectors in the real and imaginary axes and

kvk =
p

a2 + b2 magnitude (4.7a)

✓ = tan�1

✓
b

a

◆
phase (4.7b)

where tan�1 is the arctangent function. The magnitude gives the length of the vector and the
phase gives the orientation, as shown in Figure 4.2. This representation also gives us a geometrical
picture of complex conjugation since

v⇤ = kvk cos ✓r̂ � kvk sin ✓î (4.8a)

can only be true if sin ✓  0 (and thus ✓ 2 [0, �⇡]) since kvk � 0 and thus the e↵ect of complex
conjugation is a rotation in the opposite direction of ✓. as shown in Figure 4.3

4.3 Euler’s relation

One of the most important expressions involving complex numbers is Euler’s relation (?):

ei✓ = cos ✓ + i sin ✓ (4.9)



4.3 Euler’s relation 47

0

45 !

90 !

135 !

180 !

225 !

270 !

315 !

Θ

5. 10.
Re!w"

5.

10.

Im!w"

Figure 4.2 The complex plane: w = re
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Figure 4.3 Complex conjugation. w = re

i✓ and w
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�i✓.

Multiplying this expression by r = kvk gives the complex number

z = rei✓ = r cos ✓ + ir sin ✓ (4.10)

which is exactly the expression Eqn 4.6 for a complex vector when plotted in the complex plane.
We’ve chosen the letter r to emphasize that a vector fixed at the origin and moving only in
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the angular direction can be seen as the radius of a circle. Manipulation of complex numbers
is much easier using this representation. Conjugation simply changes the sign in the exponent:
z⇤ = re�i✓, and so we can check, for example, that the magnitude of z is indeed r:

kzk =
p

z⇤z =
q

(r⇤e�i✓) (rei✓) = r (4.11)

because r⇤ = r for a real number and the rule of multiplying exponentials with numbers (not
matrices) in the exponent is:

eaeb = ea+b (4.12)

giving e�i✓ei✓ = e0 = 1.
The form Eqn 4.10 for complex numbers is ubiquitous in MRI as it provides a compact way to

represent complex numbers in terms of the magnitude and phase, both of which play important
roles in MRI. We will later find that the detected signal in MRI is defined by a vector that rotates
in a plane (the so called transverse plane) about an axis defined by the main magnetic field (the
longitudinal axis). The amplitude of the signal is associated with the magnitude of the vector,
and the phase of the signal is associated with the phase of the vector. The MR signal is thus
complex. For reasons that will become clear later, the reconstructed image is also complex. The
”MR image” that one typically sees is actually the magnitude of the complex image. The phase of
the image can have great practical importance in many applications. For example, in Figure 4.4
the magnitude of an image is shown along with the phase which represents the variations in the
magnetic field that cause distortions, as will be discussed in Section ??. Figure 4.4 clearly shows
the advantage of representing complex numbers using the Euler representation. The magnitude
and phase (Figure 4.4a and Figure 4.4b) have distinct physical meanings in MRI. Representing
them as real and imaging components (Figure 4.4c and Figure 4.4d) is much harder to interpret
because it has mixed these to components together.

4.4 The polarization decomposition

Here we introduce a somewhat more subtle trick that will prove quite useful in a few important
situations. Notice that the real and imaginary components of a complex number w = x + iy can
be found from

<[z] =
1

2
(z + z⇤) (4.13a)

=[z] =
1

2i
(z � z⇤) (4.13b)

Let’s check this: <[z] = 1

2

[(x + iy) + (x � iy)] = x and =[z] = 1

2i [(x + iy) � (x � iy)] = y, so
x and y are, as constructed, the real and imaginary parts of z. Let’s now consider let ✓ be a
function of time t so that z(t) = rei✓(t) is a vector with length r rotating with phase ✓(t). From
Euler’s relation, Eqn 4.9 can be written

r cos ✓(t) =
r

2

h
ei✓(t) + e�i✓(t)

i
(4.14a)

r sin ✓(t) =
ir

2

h
ei✓(t) � e�i✓(t)

i
(4.14b)
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(a) Magnitude. (b) Phase.

(c) Real. (d) Imaginary

Figure 4.4 The MR signal and the reconstructed images are complex. The magnitude of the complex
image data produces the image in (a) that is associated with the MR image typically presented. The
phase image shown in (b) represents a magnetic field variations. The actual data are acquired as two
”channels” that are 90� out of phase: the real (c) and imaginary (d) channels. (Replace this with an

image where the phase has wrapping.)

Thus the real component r cos ✓(t) can be described as the sum of two complex vectors of equal
amplitude but rotating in opposite directions, i.e., with opposite polarizations. The imaginary
component r sin ✓(t) can be described as the di↵erence of two complex vectors of equal amplitude
and opposite polarizations. This is shown in Figure 4.5
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Figure 4.5 The polarization decomposition.

4.5 The ambiguity of phase

There are two interesting (and confounding) ambiguities that arises when attempting to deter-
mine the phase of a complex number. It is related to the fact that as a vector rotates around the
complex plane, it retraces it path over and over.

First, consider the complex vector in that rotates through an angle ✓ = �3⇡/4 as shown in
Figure 4.6a. Let it then continue to rotate in the same direct through a full rotation (i.e., ✓ = 2⇡.
If we imagine this situation being a person climbing a spiral staircase, as in Figure 4.6c, where the
height represents the total phase angle turned by the vector, the phase is unambiguous. However,
in the complex plane the vector has arrived at the location ✓ = �3⇡/4 again (Figure ??). It is
clear that this situation would be the same not matter how many additional 2⇡ rotations are
made, since that always brings the vector back to the same location on the circle. In other
words, the phase ✓ = �3⇡/4 is indistinguishable from the phase ✓ = �3⇡/4 + 2⇡n where n is an
integer. Mathematicians state this as the phase being only determined modulus (or mod) 2⇡. This
e↵ects is easily seen using the Euler representation of complex numbers since z = rei(✓+2⇡n) =
rei✓ei2⇡n = rei✓ because of the identity ei2⇡n = 1. This ambiguity is called phase wrapping and
occurs in many contexts in MRI. An example is shown in Figure 4.8.

Now consider the situation shown in Figure 4.7 of two identical vectors starting from the same
orientation (✓ = 0). The first vector rotates through and angle ✓ = �3⇡/4 Figure 4.7a while the
second vector rotates through and angle ✓ = +5⇡/4 Figure 4.7b. Again we have the situation
that these vectors are indistinguishable even though they have traversed di↵erent phase angles.
In this case the ambiguity is called aliasing , since the vectors take on the appearance of one
another. You’ve no doubt seen this e↵ect in old Westerns where the sampling rate of the film
is insu�cient to capture the rotation of the spokes resulting in wagon wheels that appears to
be rotating in the opposite direction. More pertinently, aliasing also occurs frequently in MRI
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Figure 4.6 Phase wrapping. Rotation through an angle ✓ = �3⇡/4 is indistinguishable from rotation
through an angle ✓ = �3⇡/4 + 2⇡n where n is an integer.
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Figure 4.7 Aliasing. Rotation through an angle ✓ = �3⇡/4 is indistinguishable from rotation through an
angle ✓ = +5⇡/4.

application, most notably in the apparent displacement in image intensities. This e↵ect will be
discuss in greater detail when we discuss MR image formation (Section ??).

(I was going to have an image aliasing example, but it seems confusing because it’s

the amplitude not the phase that is shown. We show this in mri chapter anyway.)

4.6 Vectors of complex numbers

Vectors can also be constructed with elements that are complex numbers. In this case the vector
is said to be a complex vector . (Not to be confused with our original example of the vector
representation of a single complex number in Figure 4.1).

As we saw in Section 4.2 the magnitude of a complex number is found by multiplying it by its
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Figure 4.8 Phase wrapping in MRI. The display of phase jumps on a standard image grayscale plot
transition from the top of the scale (white) to the bottom of the scale (black), and vise versa,
producing images that appear to have rapidly varying intensities.

complex conjugate, then taking the square root. This can be readily extended to the vector case:
in order for every element of a complex vector v to be multiplied by its complex conjugate, it is
necessary to construct the complex vector whose elements are the complex conjugated elements
of v and denote it by v⇤. To form the inner product from which we derive the length (Eqn ??),
the transpose of this vector is required: v† ⌘ (v⇤)t. The complex conjugate transpose vector v†

is called the conjugate transpose or Hermitian conjugate of v and the processes of transposition
and conjugation have been wrapped into one symbol, †. The length of a complex vector is then
just the square root of the inner product v†v of the vector with its conjugate transpose vector:

kvk =
p
v†v (4.15)

The inner product in CN is the generalization of the dot product in RN .
In general, the inner product of two complex vectors u and v is defined as

hu,vi =
NX

i=1

u⇤
i vi u,v 2 CN standard basis (4.16)

where ui, vi are the components of u,v, respectively, in the standard basis, and where u⇤ is the
complex conjugate of u. The norm of u is defined as

kuk =
p

hu,ui =

 
NX

i=1

|ui|2
! 1

2

(4.17)

which is real and non-negative. In a basis other than the standand one, the inner product is

hu,vi =
NX

i=1

wiu
⇤
i vi u,v 2 CN standard basis (4.18)

where wi are positive weights. In either case, the inner product and its norm satisfy the following
properties for all u,v,w in CN and c 2 C:

Properties of the Complex Inner Product
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Positivity : kuk > 0 for all u 6= 0

Hermiticity : hu,vi⇤ = hv,ui
Linearity : hu, av + bwi = ahu,vi + bhu,wi

where 0 is the vector of all zeros for which k0k = 0. As in the case of the dot product, two
non-zero vectors for which hu,vi = 0 are said to be orthogonal . Generally, the definition of the
inner product depends upon the coordinate system used (one speaks of “the inner product with
respect to the basis”). For our purposes, we shall be content with the Cartesian, or standard
basis.


