
Lecture 2 
Diffusion in Biological Systems



Lecture Summary

What is diffusion?
How do we describe it mathematically?

What does diffusion look like in real tissues, and can we 
characterize that?



What is diffusion and  
why do we care about it?

Self-diffusion is the thermally driven random motions of molecules 
that occurs in the absence of a concentration gradient

The self-diffusion of water is ongoing in the human body and its 
characteristics depend on the local tissue 

architecture and physiology

Therefore the ability to measure self-diffusion offers the possibility 
of non-invasively measuring tissue structure and physiology



Diffusing Ink on Paper

tissue paper
(isotropic diffusion)

newspaper
(anisotropic diffusion)

Imaging Tissue Microstructure



Random Motions

How do we describe this?



A Brief History of Diffusion Measurement

Lucretius (ca. 99BC-55BC)
Roman philosopher and poet

You will see a multitude of tiny particles mingling 
in a multitude of ways... 
"Observe what happens when sunbeams are admitted 
into a building and shed light on its shadowy places. 

their dancing is an actual indication of underlying 
movements of matter that are hidden from our 
sight...”

http://www.youtube.com/eYeFractal

http://www.youtube.com


Convection vs Diffusion 
A Cautionary Note

The large scale swirling of the dust particles is primarily 
due to air currents (convection) but the much smaller scale

 jittery movements are diffusion

Convection



A Brief History of Diffusion Measurement

Jan Ingenhousz (1730 – 1799)
Dutch botanist and physiologist

Described the “irregular movements” of coal dust 
on the surface of alcohol



A Brief History of Diffusion Measurement

Robert Brown (1773 – 1858)
British botanist and surgeon

“Brownian Motion”

Fat droplets in water

http://www.microscopy-uk.org.uk

Observation: 
irregular movement of pollen granules in water

Brown’s hypothesis:  They’re alive
Experiment: Repeat pollen experiment using tiny shards of window glass

Result:  Same!
Conclusion: Not alive

Theory: ???



Einstein’s Theory of Brownian Motion

Albert Einstein (1879 – 1955)
German physicist

Einstein’s Theory

Part 1: Equation describing motion of a Brownian particle

Part 2: Relate diffusion to experimentally measurable quantities



Einstein Theory of Brownian Motion 
Part I
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The Diffusion Equation

The particle density ⇢(x, t) at a position x at time t obeys

diffusion coefficient



Einstein Theory of Brownian Motion 
Part I

The solution to the Diffusion Equation 
for particles initially at location x0

This is a Gaussian (or Normal) distribution 
with mean position

and variance in the position
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Einstein Theory of Brownian Motion 
Part I

implies that, on average, 
the particles do not move from their initial position 

implies that the variance of a Brownian particle’s 
position is proportional to the diffusion coefficient D 

and time t

What does this mean?

x̄ = x0

�2
x

= 2Dt



Einstein Theory of Brownian Motion 
Part I

and thus not linearly proportional to time (like flow),  
but to the square root of time

Einstein argued that the displacement  
of a Brownian particle is thus the RMS distance 

Diffusion in Brain Tissue:
D ≅ 1 µ2/ ms = (0.001 mm2/s)

For t=100 msec, Δx ≅ 14 µ
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q
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p
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Gaussian Diffusion

P (x|x
o

, ⌧) =
1p

4⇡D⌧

e

� (x�x

o

)2

4⇡D⌧

� =
p
2D⌧

�

0 30x0

D ⇡ 10�3mm2/s

⇡ 1µm2/ms



Diffusion vs Flow
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D ⇡ 10�3mm2/s
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Einstein Theory of Brownian Motion 
Part I

�x ⇡ 14µm
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Einstein Theory of Brownian Motion 
Part II

The diffusion coefficient is 

where
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gas constant
Avogadro’s

number
T = temperature⌘ = viscosityr = particle radius

D = ↵
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Diffusion coefficient goes up with temperature
and down with viscosity and particle radius

It’s sensitive to the local environment!



Diffusion

Definition of Diffusion

The random migration of molecules due to
motion induced by thermal energy



Macroscopic Theory of Diffusion

The Diffusion Equation

What you probably had in chemistry class …



Flux and Random Walk

area of face = A

N(x) N(x+ �)

x+ �

x

How many particles will move across the face
from x to x+δ in unit time?

JxThat is, what is the flux

N=number of particles 
along x axis at time t



Flux and Random Walk
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Flux and Random Walk
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Fick’s First Law
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Continuity Equation

Particle conservation gives the continuity equation

Jx(x, t) Jx(x + �, t)

area of face = A

x + �x

In time ⇥ , Jx(x)A⇥ enter from left
and Jx(x + �)A⇥ leave from right

volume of box =A�



Continuity Equation
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Particle conservation means change in 
concentration must equal the flux per unit volume



Continuity Equation (1D)

�J

�x
= ��C

�t

The continuity equation describes conservative transport

J = flux
C = concentration

change in flux with location

x = spatial location
t = time

change in concentration 
with time



Fick’s Second Law
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continuityFick’s 1st Law



Microscopic Theory of Diffusion

A particle at absolute temperature T 
has a kinetic energy along each axis of kT/2 where

k is Boltzmann’s constant.

So, for a particle of mass m and velocity vx

1
2
mv2

x =
1
2
kT

This is independent of size of particle (Einstein, 1905)



Microscopic Theory of Diffusion

The velocity fluctuates, but on average

�v2
x⇥ = kT/m

�v2
x⇥1/2 = (kT/m)1/2

Thus, root-mean-squared (rms) velocity is



Microscopic Theory of Diffusion

Example
If molecular weight = 1 kg, then molecule has mass

m = 1kg/mole = 1000g/6� 1023molecules = 1.67� 10�21g

kT at 300⇥K(27⇥C) = 4.14� 10�14 g-cm2/sec2

⇥v2
x⇤1/2 = (kT/m)1/2 � 50 m/sec

Fast!



Microscopic Theory of Diffusion

But molecule is immersed in a complex (water)
environment, and so is constantly hitting 

and bouncing off of other molecules

It thus exhibits a random walk

A collection of such particles initially confined
to a small area that undergo random walks eventually

spread out in space.

This is called diffusion



Modeling diffusion: Random Walk

MRI is all about mapping the locations of molecules ...

 ... we need a way to model the spatial locations 
of Brownian molecules as a function of time



The Random Walk

start
end



⌧ = constant

Modeling diffusion: Random Walk



⌧ = constant

Modeling diffusion: Random Walk



The Random Walk

What is the average distance �r⇥ travelled?

What is the variance var(r) = ⇥r2⇤ � ⇥r⇤2
of the distances travelled?



Gaussian diffusion
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Modeling diffusion: Random Walk

The distribution of particles after a time τ 

P (x|x0, ⌧) ⇠ N(x0,�
2)



Random Walk

the walker's position is distributed 
according to a normal distribution which 

depends only on the variance of the 
individual displacements:

var(r) = �r2⇥ = 2�Dt (� = dimension)

�r⇥ = 0

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Variance


The Random Walk in 1D
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Diffusion Equation (1D) solution
Distribution of particles
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isotropic diffusion in 2D

-15 -10 -5 5 10 15
x

-15

-10

-5

5

10

15
y

⌧ = 1ms

-15 -10 -5 5 10 15
x

-15

-10

-5

5

10

15
y

⌧ = 10ms

-15 -10 -5 5 10 15
x

-15

-10

-5

5

10

15
y

⌧ = 100ms



Probability Contours 
(isotropic diffusion)



Diffusion Dimensions
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Anisotropic diffusion in 2D
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2.  Sensitivity to geometry depends upon diffusion time τ 
3.  While the D of the liquid may be a constant, there is an 
apparent diffusion coefficient (ADC) that varies with direction

Impermeable barriers
(a 2D tube)Restricted diffusion



The Random Walk in 2D
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Diffusion Anisotropy in neural tissues

Dk ⇡ 3D?

(1.2µ2/ms) (0.4µ2/ms)

Dk

D?

microtubules 
and 

neurofilaments

myelin sheath

axonal membrane



Myelinated Neural Fibers

microtubules 
and 

neurofilaments

myelin sheath

axonal membrane

D�

D�



Diffusion Anisotropy in 3D

probability contours in 3D
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Restricted Diffusion in Brain Tissues

Gray Matter
(isotropic)

White Matter
(anisotropic)

shape of diffusion 
respresents underlying 

tissue structure



Histology

Gray matter White Matter
a

b

c

a: granular layer
b:Purkinje cell layer
c: granular layer



Histology of the Cerebellum

100x 400x



Myelinated Neural Fibers

Peripheral
nervous system

Central
nervous system



What is a realistic model for Diffusion?



DiffSim 
DWI Simulation Environment

DiffSim will allow us to run experiments that 
are hard to construct with physical phantoms 

and are theoretically intractable.MCell (Bartol & Sejnowski)

Spins diffusing in a Monte Carlo random 
walk within a user-defined geometry.



DiffSim 
Cylinders in a voxel

hexagonally packed fibers with a 
radius of 12 µm. Volume fraction 
filled is 0.54. 

randomly packed fibers with a 
mean radius of 12 µm and a 
standard deviation of 2 µm. 
Volume fraction filled is 0.57.

A 200 µm3 voxel



DiffSim 
Fibers and Cells

Two fiber bundles with randomly 
oriented ellipsoidal cells with an 
average diameter of 2.0 µm.



Building computational models for diffusion in realistic tissues

DiffSim for Realistic Tissues



Computational model for diffusion in muscle

DiffSim for Realistic Tissues

200	μm

DifSim
FA=0.37

Export	as	.STL	file

Blender

David	Berry,	Ward	Lab,	UCSD	
Ben	Regner,	CNL	&	CSCI,	UCSD

Solidworks



Different ways water moves



Active transport of water


