Lecture 2
Diffusion in Biological Systems



Lecture Summary

What 1s diffusion?

How do we describe 1t mathematically?

What does ditfusion look like 1n real tissues, and can we
characterize that?



WHAT IS DIFFUSION AND
WHY DO WE CARE ABOUT IT?

Self-diffusion 1s the thermaﬂy driven random motions of molecules
that occurs 1n the absence of a concentration gradient

The selt-ditfusion of water 1s ongoing in the human body and its

characteristics depend on the local tissue
architecture and physiology

Therefore the ability to measure selt-ditfusion offers the possibility

of non-invasively measuring tissue structure and physiology
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A BRIEF HISTORY OF DIFFUSION MEASUREMENT
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http://www.youtube.com

CONVECTION VS DIFFUSION
A CAUTIONARY NOTE
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A BRIEF HISTORY OF DIFFUSION MEASUREMENT
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Jan Ingenhousz (1730 — 1799)
Dutch botanist and physmloglst

Described the “irregular movements” of coal dust

on the surface of alcohol



A BRIEF HISTORY OF DIFFUSION MEASUREMENT

“Brownian Motion”
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EINSTEIN THEORY OF BROWNIAN MOTION

change with time

PART |

The Diffusion Equation

change with space




EINSTEIN THEORY OF BROWNIAN MOTION
PART I

The solution to the Diffusion Equation

for particles initially at location Xo

This 1s a Gaussian (or Normal) distribution
with mean position

and variance 1n the position



EINSTEIN THEORY OF BROWNIAN MOTION
PART I

What does this mean?

implies that, on average,
the particles do not move from their initial position

implies that the variance of a Brownian particle’s
position 1s proportional to the diffusion coethcient D

and time ¢



EINSTEIN THEORY OF BROWNIAN MOTION
PART I

Einstein argued that the displacement
of a Brownian particle 1s thus the RMS distance

and thus not linearly proportional to time (like flow),
but to the square root of time

Diffusion 1n Brain Tissue:
D =1 u?/ ms = (0.001 mm?2/s)
For t=100 msec, Ax = 14 u




GAUSSIAN DIFFUSION




7 =100ms

v 1lmm/s

> X

Az ~ 100 um



EINSTEIN THEORY OF BROWNIAN MOTION
PART Il

The diffusion coethicient is
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Diftusion coefficient goes  with
and with and

It s sensitive to the local environment!



Diftfusion

Definition of Diffusion

The random migration of molecules due to
motion induced by thermal energy




Macroscopic Theory of Ditfusion

The Ditfusion Equation

What you probably had in chemistry class ...



Flux and Random Walk

N=number of particles area of face = A
along x axis at time £ / g
N(z) N(z+ )
. T+ 0

How many particles will move across the face
from x to a+5 1n unit time?

That 1s, what 1s the J



Flux and Random Walk

Net number

5N +8) ~ N(a)

So for area A and time 7

Ty = —%[N(x +5) — N(z)] /AT



Flux and Random Walk

. _®1[N@+0) N)
T ors | Al A5
T T T
D  C(x+9) C(x)
diffusion coefficient ~ concentration at x + 9 concentration at x

J, = —D=[C(z + 8) — C(x)]



Fick’s First Law




Continuity Equation

Particle conservation gives the continuity equation

area of face = A

Jx(z,t) — — Jp(x + 9, t)

In time 7, J,(x)AT enter from left
and J,(x + 0) AT leave from right

|
r x-+90

volume of box = 4§



Continuity Equation
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Continuity Equation (1D)
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The continuity equation describes condervative transport

J = flux

C = concentration

xr = spatial location
{

— time



Fick’s Second Law
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Microscopic Theory of Diffusion

A particle at absolute temperature 7
has a kinetic energy along each axis of £772 where

k 1s Boltzmann’s constant.

This 1s independent of size of particle (Einstein, 1905)

So, for a particle of mass m and velocity v,



Microscopic Theory of Diffusion
The velocity fluctuates, but on average
(vz) = KT'/m
Thus, root-mean-squared (rms) velocity 1s

(v3)!/? = (kT/m)"/*

I



Microscopic Theory of Diffusion

Example

If molecular weight = 1 kg, then molecule has mass

m = lkg/mole = 1000g/6 x 10*°molecules = 1.67 x 10~ *'g

kT at 300°K(27°C) = 4.14 x 10~ '* g-cm? /sec?

(v2)1/2 = (kJT/m)l/2 ~ 50 m/sec

X

Fast!



Microscopic Theory of Diffusion

But molecule i1s immersed in a complex (water)
environment, and so 1s constantly hitting

and bouncing off of other molecules

It thus exhibits a random walk

A collection of such particles imtially confined
to a small area that undergo random walks eventually
spread out 1n space.

This 1s called diffusion



MODELING DIFFUSION: RANDOM WALK

MRI 1s all about mapping the locations of molecules ...

... we need a way to model the spatial locations
of Brownian molecules as a function of time






MODELING DIFFUSION: RANDOM WALK




MODELING DIFFUSION: RANDOM WALK







p(x)

04 -
03
02

0.1 -

0.0




Random Walk

the walker's position 1s distributed
according to a normal dwtribution which
depends only on the varwnce of the

individual displacements:

(ry =20

var(r) = (r®) = 26Dt (€ = dimension)


http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Variance

The Random Walk in 1D




Diffusion Equation (1D) solution

Distribution of particles
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The Random Walk in 2D







myelin sheath

microtubules
and
neurofilaments

axonal membrane
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HISTOLOGY
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Peripheral Central

nervous system nervous system



WHAT IS A REALISTIC MODEL FOR DIFFUSION?



Bnte Carlo random
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DIFFERENT WAYS WATER MOVES

diffusion (simple) special transport proteins transcytosis

small molecules lipophilic substances glucose; GLUT-1 transporters
H4O, O4, CO., steroid hormones amino acids m
NElj, Etﬁnano?

® O s




ACTIVE

Extracellular space

Na-/Ca?*
exchanger

NCX

3 Na*

1 Ca?

Cytoplasmic space

TRANSPORT OF WATER

Na/H* CIHHCQO,
exchanger exchanger

NHE

1 Na*
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